Document Title

512Kx16 bit Low Power CMOS Static RAM

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial draft	June 18, 1999	Advance
1.0	Finalize - Adopt New Code system Improve VIN, Vout max. on ABSOLUTE MAXIMUM RATINGS'from 7.0V to Vcc+0.5V.	February 29, 2000	Final
1.01	Errata correction - Changed Icc from 15 to 12mA - Changed Icc1 from 12 to 15mA	April 17, 2000	Final

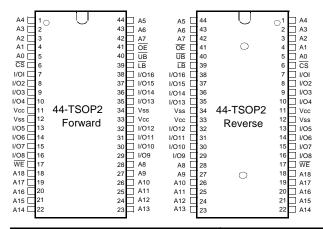
The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to yourquestions about device. If you have any questions, please contact the SAMSUNG branch offices.

512Kx16 bit Low Power CMOS Static RAM

FEATURES

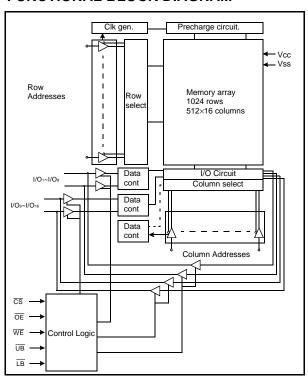
- Process Technology: TFTOrganization: 512K x16
- Power Supply Voltage: 4.5~5.5V
- Low Data Retention Voltage: 2.0V(Min)
- Three state output and TTL Compatible
- Package Type: 44-TSOP2-400F/R

GENERAL DESCRIPTION


The K6T8016C3M families are fabricated by SAMSUNG's advanced CMOS process technology. The families support industrial operating temperature ranges for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Di	ssipation	PKG Type	
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)		
K6T8016C3M-B	Commercial(0~70°C)	4.5~5.5V	55¹)/70ns	50μΑ	90mA	44-TSOP2-400F/R	
K6T8016C3M-F	Industrial(-40~85°C)			80μΑ	3011174	74-1001 2-4001/10	


^{1.} The parameter is measured with 50pF test load.

PIN DESCRIPTION

Name	me Function		Function
CS	Chip Select Input	Vcc	Power
ŌE	Output Enable Input	Vss	Ground
WE	Write Enable Input	UB	Upper Byte(I/O9~16)
A0~A18	Address Inputs	LB	Lower Byte(I/O1~8)
I/O1~I/O16	Data Inputs/Outputs		

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial 1	「emperature Products(0~70°C)	Industrial Temperature Products(-40~85°C)			
Part Name Function		Part Name	Function		
K6T8016C3M-TB55	44-TSOP2-F, 55ns, Low Low Power	K6T8016C3M-TF55	44-TSOP2-F, 55ns, Low Low Power		
K6T8016C3M-TB70	44-TSOP2-F, 70ns, Low Low Power	K6T8016C3M-TF70	44-TSOP2-F, 70ns, Low Low Power		
K6T8016C3M-RB55	44-TSOP2-R, 55ns, Low Low Power	K6T8016C3M-RF55	44-TSOP2-R, 55ns, Low Low Power		
K6T8016C3M-RB70	44-TSOP2-R, 70ns, Low Low Power	K6T8016C3M-RF70	44-TSOP2-R, 70ns, Low Low Power		

FUNCTIONAL DESCRIPTION

cs	OE	WE	LB	UB	I/O1~8	I/O9~16	Mode	Power
Н	X	Х	Х	Х	High-Z	High-Z	Deselected	Standby
L	Н	Н	X	Х	High-Z	High-Z	Output Disabled	Active
L	Х	Х	Н	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	Х	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Х	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	X	L	L	L	Din	Din	Word Write	Active

Note: X means don't care. (Must be low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	Vin,Vout	-0.5 to Vcc+0.5V	V	-
Voltage on Vcc supply relative to Vss	ve to Vss Vcc -0.3 t		V	-
Power Dissipation	Pb	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	K6T8016C3M-B
Operating remperature	1 A	-40 to 85	°C	K6T8016C3M-F

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

ltem	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.5 ³⁾	-	0.8	V

Note:

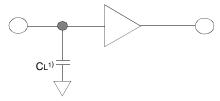
- Commercial Product: T_A=0 to 70°C, otherwise specified.
 Industrial Product: T_A=-40 to 85°C, otherwise specified.
- 2. Overshoot: Vcc+3.0V in case of pulse width ≤30ns.
- 3. Undershoot: -3.0V in case of pulse width ≤30ns.
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, Ta=25°C)

Item	Symbol	ymbol Test Condition		Max	Unit	
Input capacitance	CIN	VIN=0V	-	8	pF	
Input/Output capacitance	Сю	Vio=0V	-	10	pF	

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS


Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	lu	VIN=Vss to Vcc	Vin=Vss to Vcc		-	1	μΑ
Output leakage current	ILO	CS=VIH, OE=VIH or WE=VIL, VIO=Vss to Vo	S=VIH, OE=VIH or WE=VIL, VIO=Vss to Vcc			1	μΑ
Operating power supply current	Icc	IIO=0mA, CS=VIL, WE=VIH, VIN=VIH or VIL	D=0mA, CS=VIL, WE=VIH, VIN=VIH or VIL			12	mA
l _{CC1} Cycle time=1μs, 100% duty, l _I o=0mA, CS≤0.2V, V _I N≤0.2V or V _I N≥V _{CC} -0.2V			-	-	15	mA	
	ICC2	Cycle time=Min, IIO=0mA, 100% duty, $\overline{\text{CS}}$ =VIL, VIN=VIL or VIH			-	90	mA
Output low voltage	Vol	IOL = 2.1mA	OL = 2.1mA			0.4	V
Output high voltage	Vон	Iон = -1.0mA		2.4	-	-	V
Standby Current(TTL)	Isb	CS=VIH, Other inputs=VIH or VIL		-	-	3	mA
Standby Current(CMOS)	lan.	00×1/2= 0.21/ Other invite 0.1/2=	K6T8016C3M-B	-	-	50	^
	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	K6T8016C3M-F	-	-	80	μΑ

AC OPERATING CONDITIONS

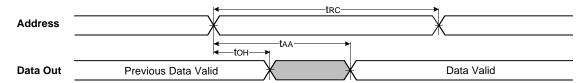
TEST CONDITIONS (Test Load and Input/Output Reference)

Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage:1.5V
Output load(see right): CL=100pF+1TTL
CL=50pF+1TTL

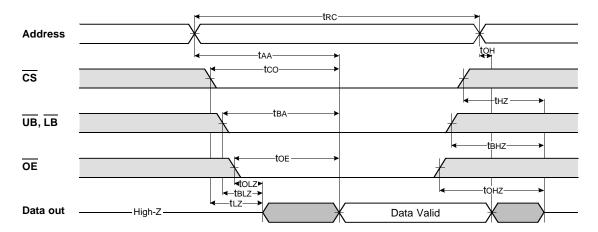
1.Including scope and jig capacitance

AC CHARACTERISTICS (Vcc=4.5~5.5V, Commercial product:TA=0 to 70°C, Industrial product:TA=-40 to 85°C)

Parameter List				Speed Bins				
		Symbol	55	55ns		ns	Units	
			Min	Max	Min	Max		
	Read cycle time	trc	55	-	70	-	ns	
	Address access time	taa	-	55	-	70	ns	
	Chip select to output	tco	-	55	-	70	ns	
	Output enable to valid output	toE	-	25	-	35	ns	
	Chip select to low-Z output	tLZ	10	-	10	-	ns	
Read	Output enable to low-Z output	toLZ	5	-	5	-	ns	
Read	LB, UB enable to low-Z output	tBLZ	5	-	5	-	ns	
	Chip disable to high-Z output	tHZ	0	20	0	25	ns	
	Output Disable to High-Z Output	tonz	0	20	0	25	ns	
	Output hold from address change	tон	10	-	10	-	ns	
	LB, UB valid to data output	tBA	-	25	-	35	ns	
	UB, LB disable to high-Z output	tBHZ	0	20	0	25	ns	
	Write cycle time	twc	55	-	70	-	ns	
	Chip select to end of write	tcw	45	-	60	-	ns	
	Address set-up time	tas	0	-	0	-	ns	
	Address valid to end of write	taw	45	-	60	-	ns	
	Write pulse width	twp	40	-	55	-	ns	
Write	Write recovery time	twr	0	-	0	-	ns	
	Write to output high-Z	twHz	0	20	0	25	ns	
	Data to write time overlap	tow	20	-	30		ns	
	Data hold from write time	tDH	0	-	0	-	ns	
	End write to output low-Z	tow	5	-	5	-	ns	
	LB, UB valid to end of write	tBW	45	-	60	-	ns	


DATA RETENTION CHARACTERISTICS

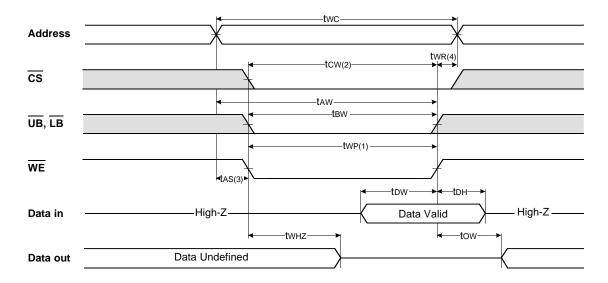
Item	Symbol	Test Condition			Тур	Max	Unit
Vcc for data retention	VdR	CS ≥Vcc-0.2V			•	5.5	V
Data retention current	IDR	Vcc=3.0V, CS≥Vcc-0.2V	K6T8016C3M-B	-	•	20	μA
Data retention current	IDK	CS≥Vcc-0.2V	K6T8016C3M-F	-	•	30	μΛ
Data retention set-up time	tsdr	See data retention waveform	0	•	-	ms	
Recovery time	trdr	Occ data retention wavelonn		5	-	-	1113



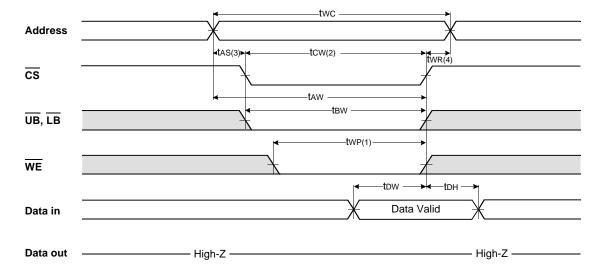
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL$, $\overline{WE} = VIH$, \overline{UB} or/and $\overline{LB} = VIL$)

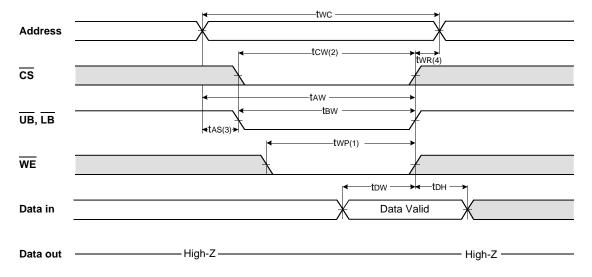
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)


NOTES (READ CYCLE)

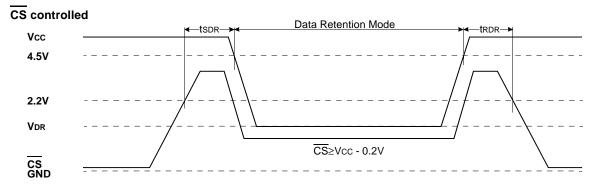
- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.



6


TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

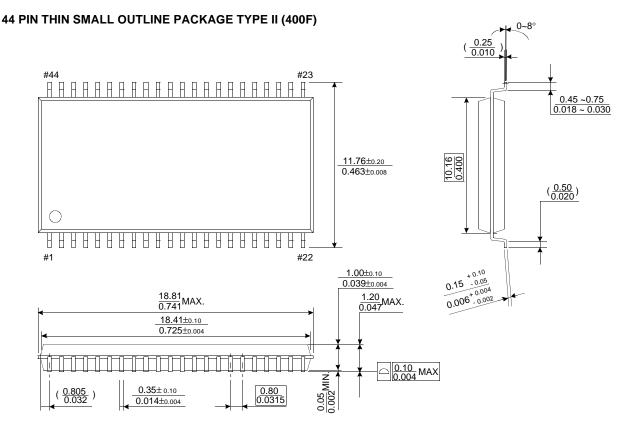
TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

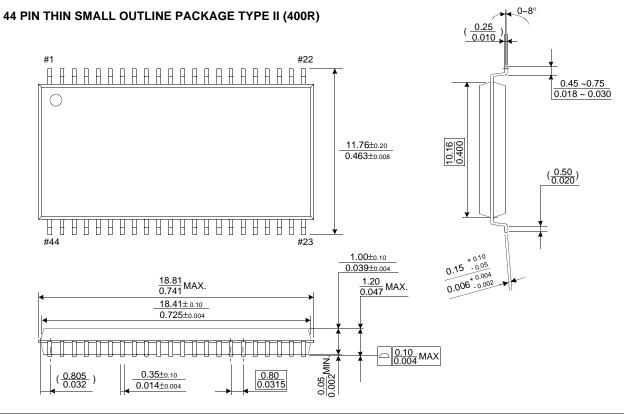

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twe) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change, twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION WAVE FORM





8

PACKAGE DIMENSIONS

Unit: millimeters(inches)

