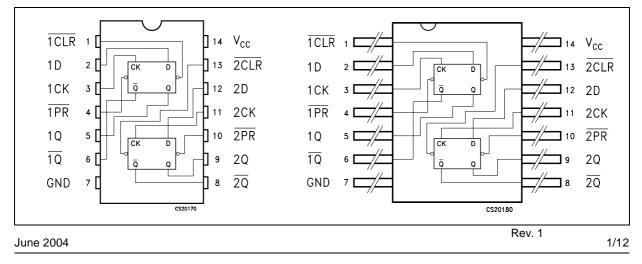

M54HC74

RAD HARD DUAL D TYPE FLIP FLOP WITH PRESET AND CLEAR

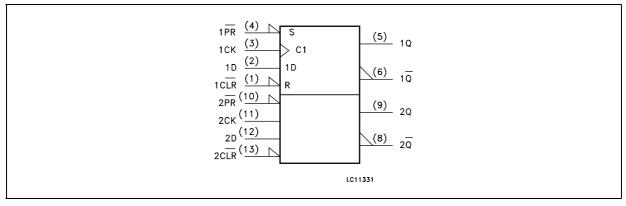
- HIGH SPEED:
- f_{MAX} = 67MHz (TYP.) at V_{CC} = 6V ■ LOW POWER DISSIPATION:
- $I_{CC} = 2\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- HIGH NOISE IMMUNITY:
 V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 74
- SPACE GRADE-1: ESA SCC QUALIFIED
- 50 krad QUALIFIED, 100 krad AVAILABLE ON REQUEST
- NO SEL UNDER HIGH LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH SCC-9203-050

DESCRIPTION

The M54HC74 is an high speed CMOS DUAL D TYPE FLIP FLOP WITH CLEAR fabricated with silicon gate C²MOS technology.


ORDER CODES

PACKAGE	FM	EM
DILC	M54HC74D	M54HC74D1
FPC	M54HC74K	M54HC74K1


A signal on the D INPUT is transferred on the Q OUTPUT during the positive going transition of the clock pulse. CLEAR and PRESET are independent of the clock and accomplished by a low on the appropriate input.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

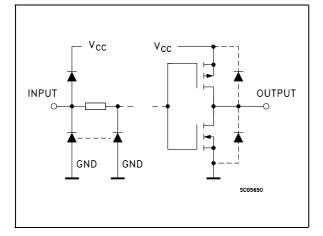

PIN CONNECTION

Figure 1: IEC Logic Symbols

Figure 2: Input And Output Equivalent Circuit

Table 1: Pin Description

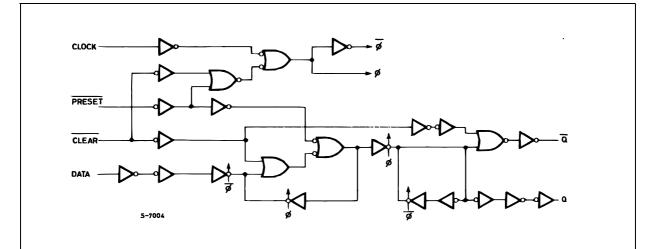

PIN N°	SYMBOL	NAME AND FUNCTION
1,13	$1\overline{\text{CLR}}, 2\overline{\text{CLR}}$	Asynchronous Reset - Direct Input
2, 12	1D, 2D	Data Inputs
3, 11	1CK, 2CK	Clock Input (LOW-to-HIGH, Edge-Triggered)
4, 10	1PR, 2PR	Asynchronous Set - Direct Input
5, 9	1Q, 2Q	True Flip-Flop Outputs
6, 8	1 <u>Q</u> , 2 <u>Q</u>	Complement Flip-Flop Outputs
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage

Table 2: Truth Table

	INP	UTS		ουτι	PUTS	FUNCTION
CLR	PR	D	СК	Q	Q	FUNCTION
L	Н	Х	Х	L	Н	CLEAR
Н	L	Х	Х	Н	L	PRESET
L	L	Х	Х	Н	Н	
Н	Н	L	Ļ	L	н	
н	Н	Н		Н	L	
н	Н	Х	7_			NO CHANGE

X : Don't Care

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
۱ _۵	DC Output Current	± 25	mA
I_{CC} or I_{GND}	DC V _{CC} or Ground Current	± 50	mA
PD	Power Dissipation	300	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	265	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 4: Recommended Operating Conditions

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	2 to 6	V	
VI	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	$V_{CC} = 2.0V$	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

57

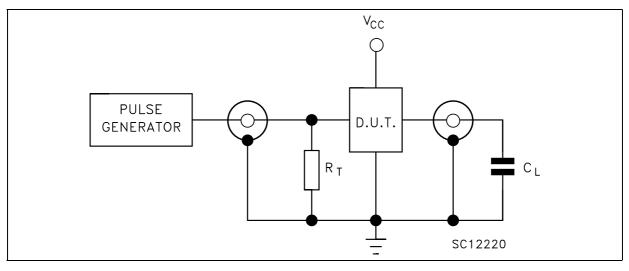
Table 5: DC Specifications

		Г	est Condition				Value				
Symbol	Parameter	v _{cc}		т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V _{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	ļ
V _{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	l _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
l	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_{I} = V_{CC}$ or GND			2		20		40	μΑ

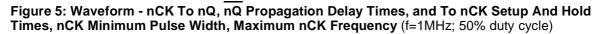
57

		Test Condition				Value				
Symbol	Parameter	v _{cc}	Т	T _A = 25°C			85℃	-55 to 125°C		Unit
		(Ŭ)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0		30	75		95		110	
	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0		48	150		190		225	
	Time (CK - Q, Q)	4.5		16	30		38		45	ns
		6.0		13	26		32		38	
t _{PLH} t _{PHL}	Propagation Delay	2.0		51	150		190		225	
	Time (CLR, PR -	4.5		17	30		38		45	ns
	Q, Q)	6.0		15	26		32		38	
f _{MAX}	Maximum Clock Frequency	2.0	6.2	21		5		4.2		
		4.5	31	63		25		21		MHz
		6.0	37	67		30		25		
t _{W(H)}	Minimum Pulse	2.0		18	75		95		110	
t _{W(L)}	Width (CK)	4.5		6	15		19		22	ns
		6.0		6	13		16		19	
t _{W(L)}	Minimu <u>m Pulse</u>	2.0		21	75		95		110	
	Width (CLR, PR)	4.5		7	15		19		22	ns
		6.0		6	13		16		19	
t _s	Minimum Set-up	2.0		15	75		95		110	
	Time	4.5		4	15		19		22	ns
		6.0		3	13		16		19	
t _h	Minimum Hold Time	2.0			0		0		0	
		4.5			0		0		0	ns
		6.0			0		0		0	
t _{REM}	Minim <u>um Remo</u> val	2.0		0	25		30		35	
	Time (CLR, PR to	4.5		0	5		6		7	ns
	CK)	6.0		0	4		5		6	

Table 6: AC Electrical Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)


Table 7: Capacitive Characteristics

		Г	Test Condition		Value						
Symbol	Parameter	v _{cc}		Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	V)		Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			34						pF


1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$ (per FLIP/FLOP)

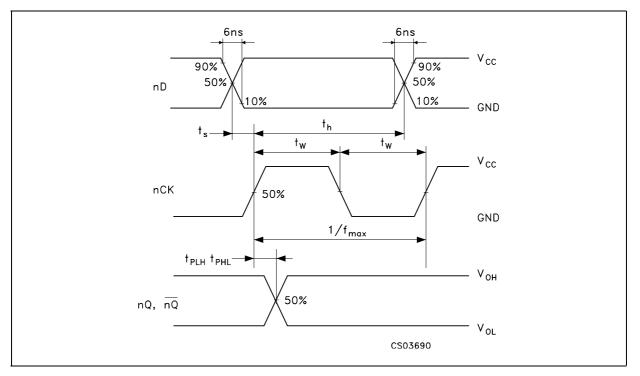
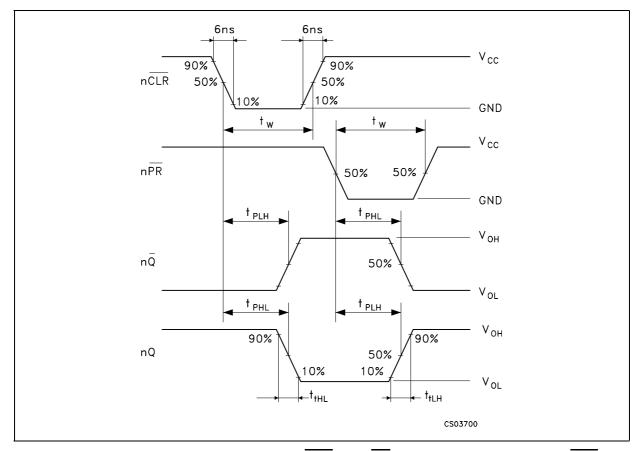
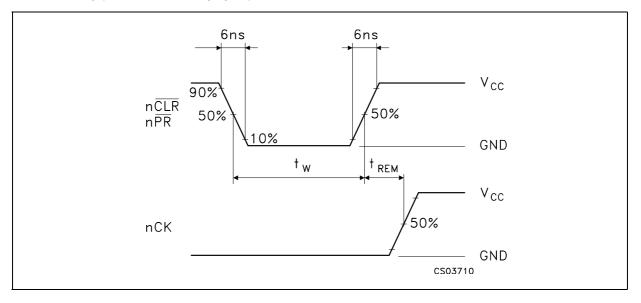


Figure 4: Test Circuit



 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)



57

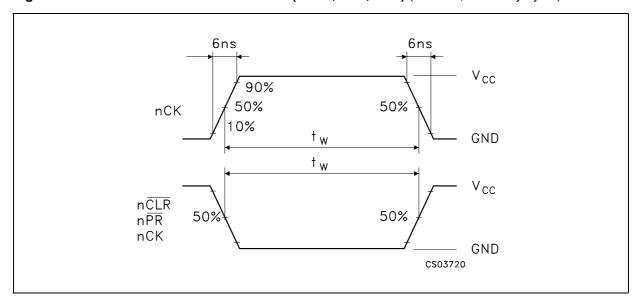
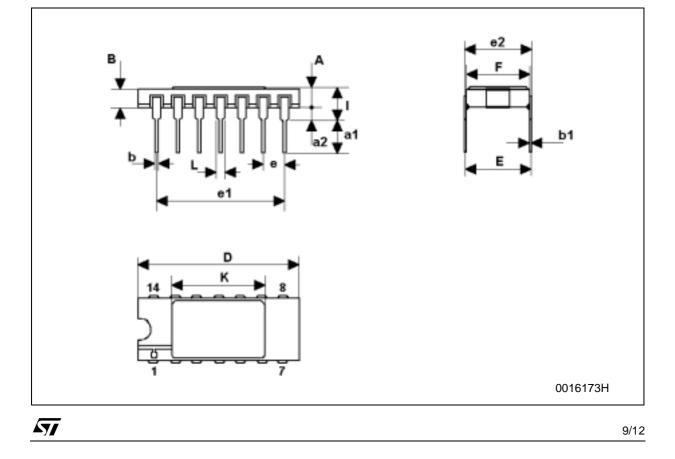

Figur<u>e 6:</u> Waveform - nQ , nQ TO CLR, PR Propagation Delay Times, Minimum Pulse Width (nCLR and nPR) (f=1MHz; 50% duty cycle)

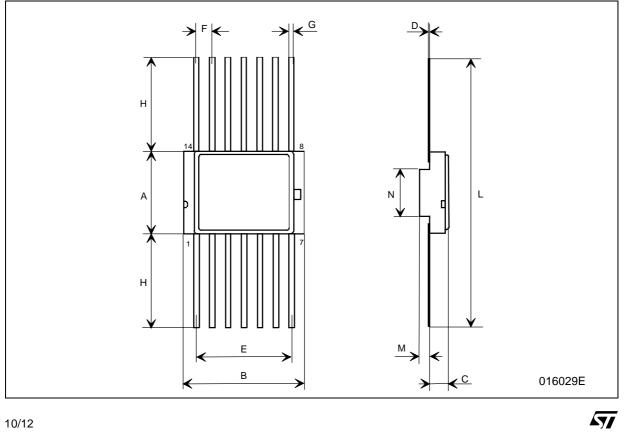
Figure 7: Waveform - Minimum Pulse Width (nCLR and nPR), Minimum Removal Time (nCLR and nPR TO nCK) (f=1MHz; 50% duty cycle)

57

M54HC74



57


Figure 8: Waveform - Minimum Pulse Width (nCLR, nPR, nCK) (f=1MHz; 50% duty cycle)

DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	2.1		2.54	0.083		0.100
a1	3.00		3.70	0.118		0.146
a2	0.63	0.88	1.14	0.025	0.035	0.045
В	1.82	2.03	2.39	0.072	0.080	0.094
b	0.40	0.45	0.50	0.016	0.018	0.020
b1	0.20	0.254	0.30	0.008	0.010	0.012
D	18.79	19.00	19.20	0.740	0.748	0.756
E	7.36	7.62	7.87	0.290	0.300	0.310
е		2.54			0.100	
e1	15.11	15.24	15.37	0.595	0.600	0.605
e2	7.62	7.87	8.12	0.300	0.310	0.320
F	7.11		7.75	0.280		0.305
I			3.70			0.146
К	10.90		12.1	0.429		0.476
L	1.14	1.27	1.5	0.045	0.050	0.059

	FPC-14 MECHANICAL DATA									
DIM.		mm.			inch					
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.				
А	6.75	6.91	7.06	0.266	0.272	0.278				
В	9.76	9.95	10.14	0.384	0.392	0.399				
С	1.49		1.95	0.059		0.077				
D	0.10	0.127	0.15	0.004	0.005	0.006				
Е	7.50	7.62	7.75	0.295	0.300	0.305				
F		1.27			0.050					
G	0.38	0.43	0.48	0.015	0.017	0.019				
Н		6.0			0.236					
L	18.75		22.0	0.738		0.866				
М		0.38			0.015					
Ν		4.31			0.170					

10/12

Table 8: Revision History

Date	Revision	Description of Changes
01-Jun-2004	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com

57

12/12