Document Title

512Kx8 bit Low Power CMOS Static RAM

Revision History

Revision No.	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>
0.0	Initial Draft	December 7, 1996	Advance
0.1	Revise - Changed Operating current by reticle revision Icc at write: 35mA → 45mA Icc1 at read/write: 15/35mA → 10/45mA	March 6, 1997	Preliminary
1.0	Finalize - Changed Operating current Icc1 at write: $45\text{mA} \rightarrow 40\text{mA}$ Icc2; $90\text{mA} \rightarrow 80\text{mA}$ - Change test load at 55ns : $100\text{pF} \rightarrow 50\text{pF}$	October 9, 1997	Final
2.0	Revise - Change datasheet format	February 17, 1998	Final
3.0	Revise - Industrial product speed bin change:70/100ns \rightarrow 55/70ns	September 8, 1998	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

512Kx8 bit Low Power CMOS Static RAM

FEATURES

• Process Technology: TFT

• Organization: 512Kx8

• Power Supply Voltage: 4.5~5.5V

• Low Data Retention Voltage: 2V(Min)

Three state output and TTL Compatible
Package Type: 32-DIP-600, 32-SOP-525

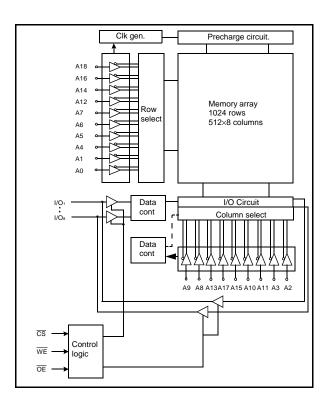
32-TSOP2-400F/R

GENERAL DESCRIPTION

The K6T4008C1B families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and various package types for user flexibility of system design. The family also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Dissipation			
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type	
K6T4008C1B-L	Commercial (0~70°C)		55 ¹⁾ /70ns	100μΑ		32-DIP-600, 32-SOP-525	
K6T4008C1B-B	(6 . 6 . 6)	4.5~5.5V		20μΑ	80mA	32-TSOP2-400F/R	
K6T4008C1B-P	Inderstrial (-40~85°C)	4.0 0.0 V		100μΑ		32-SOP-525	
K6T4008C1B-F	inderstrial (-40~05 C)			50μΑ		32-TSOP2-400F/R	


^{1.} The parameter is measured with 50pF test load.

PIN DESCRIPTION

A14

Pin Name	Function
WE	Write Enable Input
CS	Chip Select Input
ŌE	Output Enable Input
A0~A18	Address Inputs
I/O1~I/O8	Data Inputs/Outputs
Vcc	Power
Vss	Ground

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Tempera	ture Products(0~70°C)	Industrial Temperature Products(-40~85°C)			
Part Name	Part Name Function		Function		
K6T4008C1B-DL55	32-DIP, 55ns, L-pwr	K6T4008C1B-GP55	32-SOP, 55ns, L-pwr		
K6T4008C1B-DB55	32-DIP, 55ns, LL-pwr	K6T4008C1B-GF55	32-SOP, 55ns, LL-pwr		
K6T4008C1B-DL70	32-DIP, 70ns, L-pwr	K6T4008C1B-GP70	32-SOP, 70ns, L-pwr		
K6T4008C1B-DB70	32-DIP, 70ns, LL-pwr	K6T4008C1B-GF70	32-SOP, 70ns, LL-pwr		
K6T4008C1B-GL55	32-SOP, 55ns, L-pwr	K6T4008C1B-VF55	32-TSOP2-F, 55ns, LL-pwr		
K6T4008C1B-GB55	32-SOP, 55ns, LL-pwr	K6T4008C1B-VF70	32-TSOP2-F, 70ns, LL-pwr		
K6T4008C1B-GL70	32-SOP, 70ns, L-pwr	K6T4008C1B-MF55	32-TSOP2-R, 55ns, LL-pwr		
K6T4008C1B-GB70	32-SOP, 70ns, LL-pwr	K6T4008C1B-MF70	32-TSOP2-R, 70ns, LL-pwr		
K6T4008C1B-VB55	32-TSOP2-F, 55ns, LL-pwr				
K6T4008C1B-VB70	32-TSOP2-F, 70ns, LL-pwr				
K6T4008C1B-MB55	32-TSOP2-R, 55ns, LL-pwr				
K6T4008C1B-MB70	32-TSOP2-R, 70ns, LL-pwr				

FUNCTIONAL DESCRIPTION

cs	OE	WE	I/O Pin	Mode	Power
Н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	High-Z	Output disbaled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care.(Must be in low or high state.)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to 7.0	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to 7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	K6T4008C1B-L/-B
Operating reinperature	IA	-40 to 85	°C	K6T4008C1B-P/-F
Soldering temperature and time	TSOLDER	260°C, 10sec(Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.5 ³⁾	-	0.8	V

Note:

- 1. Commercial Product: T_A=0 to 70°C, otherwise specified Industrial Product: T_A=-40 to 85°C, otherwise specified
- 2. Overshoot: Vcc+3.0V in case of pulse width ≤ 30ns
- 3. Undershoot: -3.0V in case of pulse width ≤ 30ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

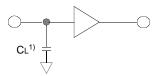
CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions			Min	Тур	Max	Unit
Input leakage current	ILI	VIN=Vss to Vcc				-	1	μΑ
Output leakage current	ILO	$\overline{\text{CS}}=\text{VIH or }\overline{\text{OE}}=\text{VIH or }\overline{\text{WE}}=\text{VIL, VIO}=\text{Vss to}$	Vcc		-1	-	1	μΑ
Operating power supply	Icc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read			-	7.5	15	mA
	Icc1	Cycle time=1μs, 100% duty, Iιο=0mA		Read	-	4	10	mA
Average operating current	ICC1	CS≤0.2V, VIN≥0.2V or VIN≥ Vcc-0.2V		Write	-	27	40	ш
	ICC2	Cycle time=Min, 100% duty, Iio=0mA, \overline{CS} =ViL, ViN=ViH or ViL			-	65	80	mA
Output low voltage	Vol	IoL=2.1mA	IoL=2.1mA			-	0.4	V
Output high voltage	Voн	IOH=-1.0mA			2.4	-	-	V
Standby Current(TTL)	IsB	CS=VIH, Other inputs = VIL or VIH			-	-	3	mA
			K6T4008C1B-L		-	2	100	μΑ
Standby Current(CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	K6T4008C1B-B		-	1	20	μΑ
Standby Guitent(CMOS)	ISBI	OO2 v cc-0.2 v, Other Inputs=0~ v cc	K6T4008C1B-P		-	2	100	μΑ
			K6T4008	C1B-F	-	1	50	μΑ



K6T4008C1B Family

AC OPERATING CONDITIONS

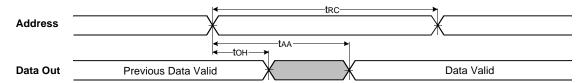
TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.8 to 2.4V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load (See right): CL=100pF+1TTL
CL=50pF+1TTL

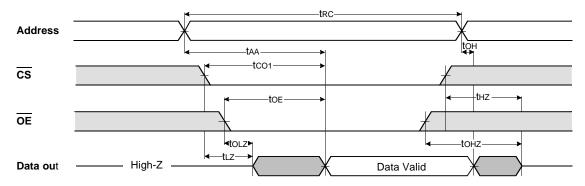
1. Including scope and jig capacitance

AC CHARACTERISTICS (Vcc=4.5~5.5V, Commercial product: Ta=0 to 70°C, Industrial product: Ta=-40 to 85°C)

	Parameter List		55	55*ns)ns	Units
			Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	ns
	Address access time	taa	-	55	-	70	ns
	Chip select to output	tco	-	55	-	70	ns
	Output enable to valid output	toE	-	25	-	35	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	ns
	Output enable to low-Z output	toLZ	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	ns
	Output disable to high-Z output	tonz	0	20	0	25	ns
	Output hold from address change	tон	10	-	10	-	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
Write	Write pulse width	twp	40	-	50	-	ns
WIIIC	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	toh	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns


DATA RETENTION CHARACTERISTICS

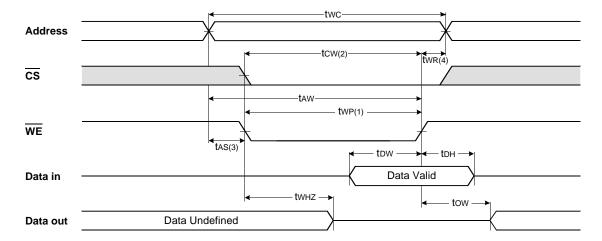
Item	Symbol	Test Condition			Тур	Max	Unit
Vcc for data retention	VDR	CS≥Vcc-0.2V	2.0	-	5.5	V	
		Vcc=3.0V, CS≥Vcc-0.2V	K6T4008C1B-L	-	-	50	
Data retention current	IDR		K6T4008C1B-B	-	-	15	μΑ
Data retention current	IDIX		K6T4008C1B-P	-	-	50	
			K6T4008C1B-F	-	-	20	
Data retention set-up time	tsdr	See data retention waveform	0	-	-	ms	
Recovery time	trdr	occ data retention wavelonn	5	-	-	1113	



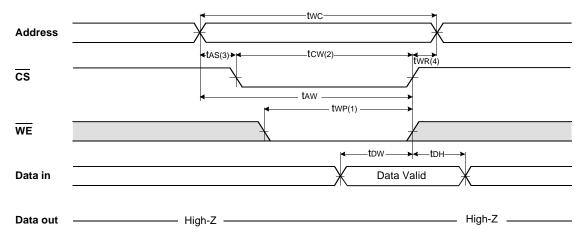
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

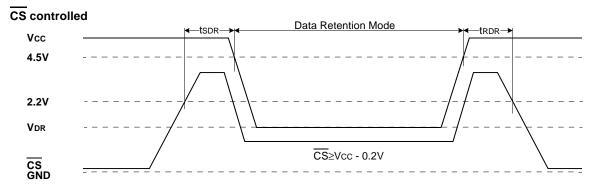


NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

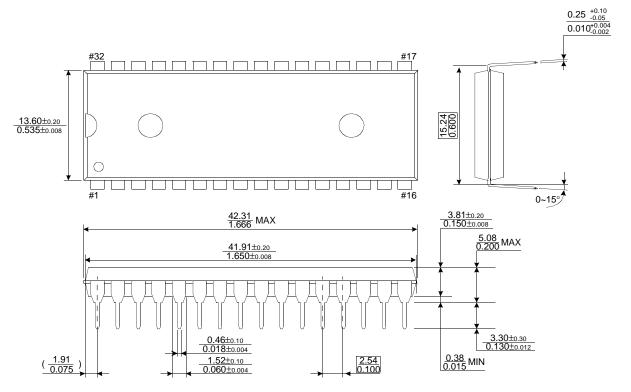


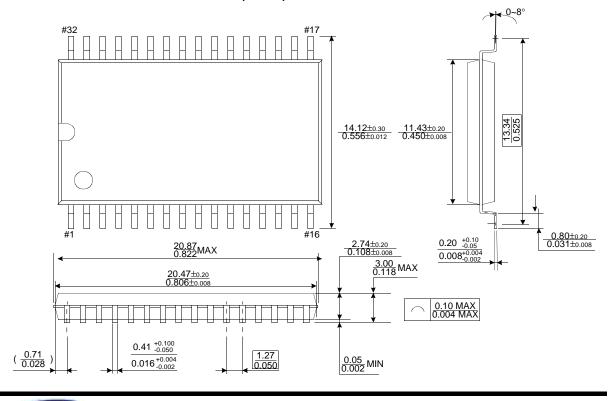
NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$. A write begins at the latest transition among $\overline{\text{CS}}$ going Low and $\overline{\text{WE}}$ going low : A write end at the earliest transition among $\overline{\text{CS}}$ going high and $\overline{\text{WE}}$ going high, twp is measured from the begining of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.

 4. twn is measured from the end of write to the address change. twn applied in case a write ends as CS or WE going high.

DATA RETENTION WAVE FORM

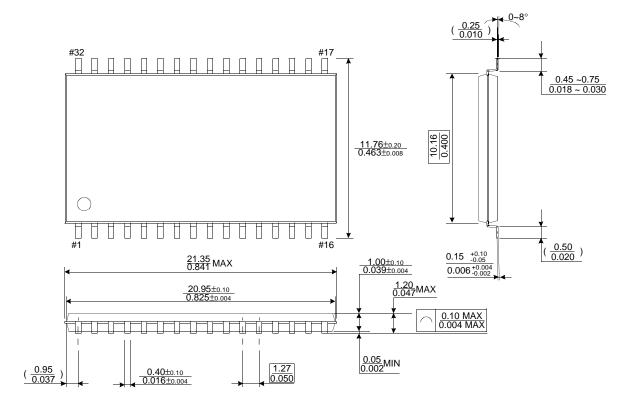


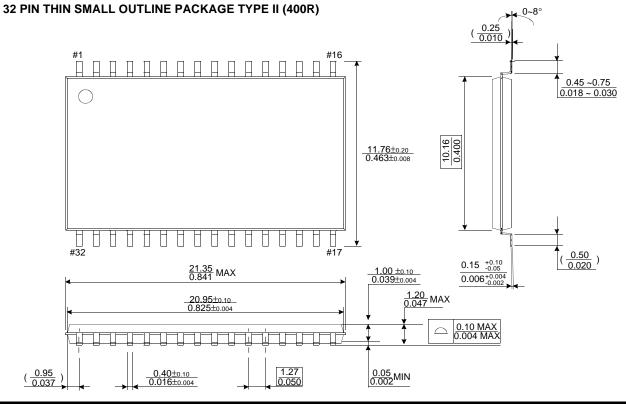

PACKAGE DIMENSIONS

Units: millimeter(Inch)

32 PIN DUAL INLINE PACKAGE (600mil)

32 PIN PLASTIC SMALL OUTLINE PACKAGE (525mil)





PACKAGE DIMENSIONS

Units: millimeter(Inch)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400F)

