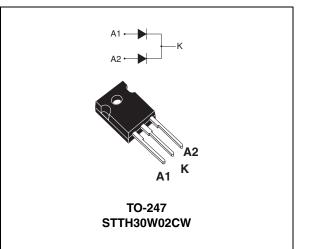


STTH30W02C

Turbo 2 ultrafast high voltage rectifier


Datasheet - production data

Features

- Ultrafast switching
- Low reverse recovery current
- Low thermal resistance
- Reduces switching losses
- ECOPACK[®]2 compliant component

Description

The STTH30W02CW, uses ST Turbo 2, 200 V technology. It is especially suited to be used for DC/DC and DC/AC converters in secondary stage of MIG/MMA/TIG welding machine. Housed in ST's TO-247, this device offers high power integration for all welding machines and industrial applications.

Table 1.Device summary

Symbol	Value
I _{F(AV)}	2 x 15 A
V _{RRM}	200 V
t _{rr} (typ)	20 ns
T _j (max)	175 °C
V _F (typ)	0.90 V

October 2012

Doc ID 023273 Rev 1

1/8

This is information on a product in full production.

1 Characteristics

Table 2. Absolute ratings (limiting values, at 25 °C, unless otherwise specified)

Symbol	Paramete	Value	Unit			
V _{RRM}	Repetitive peak reverse voltage	200	V			
I _{F(RMS)}	Forward rms current	30	А			
1	Average forward current, $\delta = 0.5$	T _c = 125 °C	Per diode	15	А	
^I F(AV)	Average lorward current, $\delta = 0.5$	$T_c = 115^{\circ}C$	Per device	30	~	
I _{FSM}	Surge non repetitive forward current	140	А			
T _{stg}	Storage temperature range	-65 to + 175	°C			
Тj	Maximum operating junction tempera		+ 175	°C		

Table 3. Thermal resistance

Symbol	Parameter		Value	Unit
Р	Junction to case	Per diode	2.5	
R _{th(j-c)}	Junction to case	Total		°C / W
R _{th(c)}	Coupling	·	0.5	

When diodes 1 and 2 are used simultaneously:

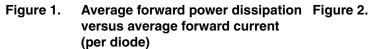
 $T_j(diode 1) = P(diode 1) \times R_{th(j-c)}(per diode) + P(diode 2) \times R_{th(c)}$

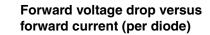
Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
	Povorco lookago ourront	T _j = 25 °C	V _R = V _{RRM}			10	μA
'R`´	I _R ⁽¹⁾ Reverse leakage current	T _j = 125 °C			5	50	
	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 15A			1.20	
V ⁽²⁾		T _j = 150 °C			0.90	1.05	v
VF		T _j = 25 °C	I _F = 30 A			1.4	v
		T _j = 150 °C			1.1	1.3	

1. Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$

2. Pulse test: t_p = 380 μ s, δ < 2%


To evaluate the conduction losses use the following equation:


 $P = 0.8 \text{ x } I_{F(AV)} + 0.0167 I_{F}^{2}_{(RMS)}$

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _{RM}	Reverse recovery current				7	9	А
Q _{RR}	Reverse recovery charge	T _j = 125 °C	I _F = 15 A, V _R = 160 V dI _F /dt = -200 A/μs		160		nC
S _{factor}	Softness factor				0.3		
t _{rr}	Reverse recovery time	T _j = 25 °C	I _F = 1 A, V _R = 30 V dI _F /dt = -100 A/μs		20	25	ns
t _{fr}	Forward recovery time	T _j = 25 °C	C I _F = 15 A, V _{FR} = 1.1 V			200	ns
V _{FP}	Forward recovery voltage	T _j = 25 °C	dI _F /dt = 100 A/µs		1.6	2.4	V

 Table 5.
 Dynamic electrical characteristics

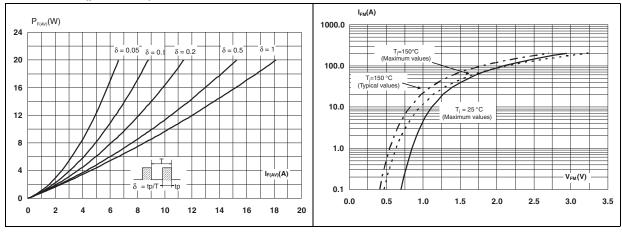
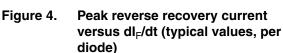
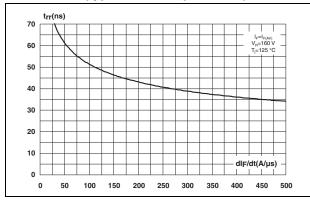
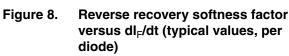



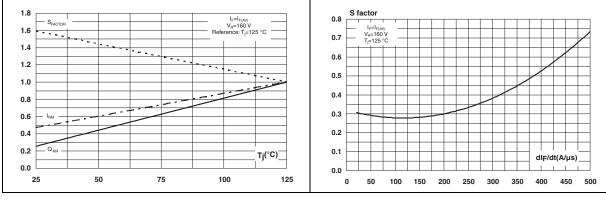
Figure 3. Relative variation of thermal impedance junction to case versus pulse duration

IRM(A) Zth(j-c)/Rth(j-c) 16 1.0 14 = I_{F(AV)} = 160 V 0.9 Ti =125 °C 0.8 12 0.7 10 0.6 8 0.5 0.4 6 0.3 4 0.2 2 0.1 tp(s) dlF/dt(A/µs) нЩ 0.0 0 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 0 100 150 200 250 300 350 400 450 500 50



dlF/dt(A/µs)


400 450 500


Figure 5. Reverse recovery time versus dI_F/dt Figure 6. (typical values, per diode)

Reverse recovery charges versus dl_F/dt (typical values, per diode)

Figure 7. Relative variations of dynamic parameters versus junction temperature

Q_{RR}(nC)

I_F=I_{F(AV)} /n=160 V

T_j=125 °C

100 150 200 250 300 350

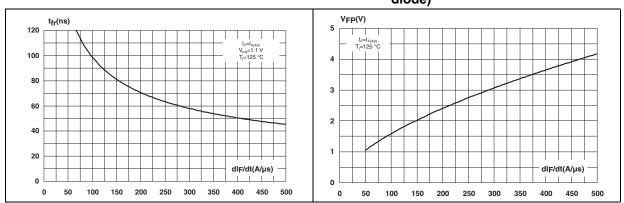
300

250

200

150

100


50

0

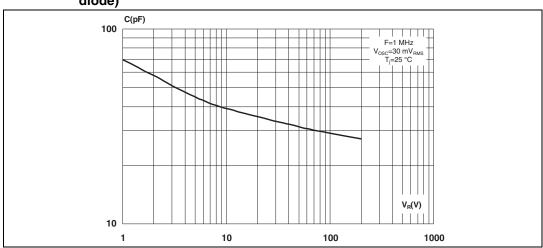

0 50

Figure 9. Forward recovery time versus dI_F/dt Figure 10. (typical values, per diode)

Transient peak forward voltage versus dl_F/dt (typical values, per diode)

Figure 11. Junction capacitance versus reverse voltage applied (typical values, per diode)

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 N·m (1.0 N·m maximum)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

Table 6. TO-247 dimensions

			Dimensions						
		Ref.	Mi	Millimeters		Inches			
			Min.	Тур.	Max.	Min.	Тур	Max.	
		Α	4.85		5.15	0.191		0.203	
i		A1	2.20		2.60	0.086		0.102	
E Heat-sink plane	b	1.00		1.40	0.039		0.055		
	Heat-sink plane ÆP	b1	2.00		2.40	0.078		0.094	
		b2	3.00		3.40	0.118		0.133	
	- KOJ	С	0.40		0.80	0.015		0.031	
		D ⁽¹⁾	19.85		20.15	0.781		0.793	
	A1, C BACK VIEW	Е	15.45		15.75	0.608		0.620	
		е	5.30	5.45	5.60	0.209	0.215	0.220	
		- C	L	14.20		14.80	0.559		0.582
			L1	3.70		4.30	0.145		0.169
		L2	1	8.50 ty	p.	0	.728 ty	Э.	
		ØP ⁽²⁾	3.55		3.65	0.139		0.143	
		ØR	4.50		5.50	0.177		0.217	
		S	5.30	5.50	5.70	0.209	0.216	0.224	

1. Dimension D plus gate protrusion does not exceed 20.5 mm

2. Resin thickness around the mounting hole is not less than 0.9 mm

6/8

3 Ordering information

Table 7. Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode	
STTH30W02CW	STTH30W02CW	TO-247	4.46 g	50	Tube	

4 Revision history

Table 8.Document revision history

Date	Revision	Changes
05-Oct-2012	1	First issue.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

8/8

Doc ID 023273 Rev 1

