Middle Power LED Series 2835

LM281B SDCM3

Designed for better Im/\$ (Ambient, Linear, Lamps)

Features \& Benefits

- 0.5W Class mid power LED
- Standard form factor for design flexibility $(2.8 \times 3.5 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information ------------------------- 6
3. Typical Characteristics Graphs 11
4. Outline Drawing \& Dimension 14
5. Reliability Test Items \& Conditions 15
6. Soldering Conditions 16
7. Tape \& Reel 17
8. Label Structure 19
9. Packing Structure 20
10. Precautions in Handling \& Use 22
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	$-40 \sim+80$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	Tstg	$-40 \sim+80$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	Tj	115	${ }^{\circ} \mathrm{C}$	-
Forward Current	IF	160	mA	-
Peak Pulsed Forward Current	$I_{\text {Fp }}$	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	2	kV	-

Note:

Proper current derating must be observed to maintain junction temperature below the maximum at all time.
b) Electro-optical Characteristics ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Unit	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (VF)	V	WA	A2	2.9		3.0
			A3	3.0		3.1
			A4	3.1	-	3.2
			A5	3.2	-	3.3
Color Rendering Index (Ra)	-	5		80	-	-
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$			-	25	-
Beam Angle	-			-	120	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}, \mathrm{CRI}= \pm 3$
b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	CRI (R_{a}) Min.	Nominal CCT (K)	Bin	150 mA		Calculated value at 65 mA	
				Min.	Max.	Min.	Max.
			S2	53.3	57.3	26.0	28.0
		2700	S3	57.3	61.3	28.0	30.0
			S4	61.3	65.3	30.0	32.0
			S2	54.3	58.3	26.5	28.5
		3000	S3	58.3	62.3	28.5	30.5
			S4	62.3	66.3	30.5	32.5
			S2	55.3	59.3	27.0	29.0
		3500	S3	59.3	63.3	29.0	31.0
			S4	63.3	67.3	31.0	33.0
			S2	57.3	61.3	28.0	30.0
Luminous Flux (DV)	80	4000	S3	61.3	65.3	30.0	32.0
			S4	65.3	69.3	32.0	34.0
			S2	59.3	63.3	29.0	31.0
		5000	S3	63.3	67.3	31.0	33.0
			S4	67.3	71.3	33.0	37.0
			S2	58.3	62.3	28.5	30.5
		5700	S3	62.3	66.3	30.5	32.5
			S4	66.3	71.3	32.5	36.5
			S2	57.3	61.3	28.0	30.0
		6500	S3	61.3	65.3	30.0	32.0
			S4	65.3	69.3	32.0	34.0

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3$
Calculated luminous flux values at 65 mA are for reference only.

2. Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S	P	M	W	H	1	2	2	8	F	D	5	W	A	R	U	S	O

a) Luminous Flux Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

SIMSUNG
c) Color Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Note:

"ヶ" can be "S2", "S3" or "S4" of luminous flux bin
d) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

$\operatorname{CRI}\left(R_{a}\right)$ Min.	Nominal CCT (K)	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
-	-	-	WA	A2	2.9 ~ 3.0
				A3	$3.0 \sim 3.1$
				A4	3.1 ~ 3.2
				A5	3.2 ~ 3.3

e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

SIMSUNG
e) Chromaticity Region \& Coordinates

Region	CIE x	CIEy	Region	CIE x	CIEy
W rank (2700 K)			V rank (3000 K)		
WU	0.4523	0.4085	VU	0.4281	0.4006
	0.4532	0.4008		0.4300	0.3939
	0.4641	0.4112		0.4403	0.4049
	0.4634	0.4193		0.4385	0.4119
U rank (3500 K)			T rank (4000K)		
UU	0.4010	0.3882	TU	0.3763	0.3760
	0.4048	0.3832		0.3804	0.3721
	0.4150	0.3950		0.3887	0.3836
	0.4113	0.4001		0.3847	0.3877
R rank (5000 K)			Q rank (5700 K)		
RU	0.3411	0.3522	QU	0.3254	0.3388
	0.3446	0.3491		0.3294	0.3364
	0.3492	0.3587		0.3332	0.3458
	0.3457	0.3621		0.3293	0.3481
P rank (6500K)					
PU	0.3089	0.3249			
	0.3137	0.3238			
	0.3172	0.3332			
	0.3123	0.3341			

Note: Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT: 2700 K (80 CRI)

CCT: 3500 K (80 CRI)

CCT: 5000 K (80 CRI)

CCT: 3000 K (80 CRI)

CCT: 4000 K (80 CRI)

CCT: 5700 K (80 CRI)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

c) Temperature Characteristics ($\mathrm{IF}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}$)

d) Color Shift Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{l}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

- Measurement unit: mm
- Tolerance: $\pm 0.1 \mathrm{~mm}$
[Recommended PCB Solder PAD]

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

SIMSUNG

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 160 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 160 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \mathrm{DC} 160 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 160 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$, each 20 min , on/off 5 min Temp. Change time 100min, DC 160 mA	100 cycles	22
Temperature Cycle	$-40^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 100^{\circ} \mathrm{C} / 15 \mathrm{~min}$	200 cycles	100
High Temperature Storage	$120^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$	1000 h	11

ESD (HBM)

$R_{1}: 10 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{z}}: 1.5 \mathrm{k} \Omega$
C: 100 pF
V: $\pm 2 \mathrm{kV}$
30
b) Criteria for Judging the Damage

Item	Symbol	Test Condition $\left(T_{s}=25^{\circ} \mathrm{C}\right)$	Limit
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=160 \mathrm{~mA}$	Min

SIMSUNG
6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

Taping Diretion

b) Reel Dimension

Notes:

1) Quantity: The quantity/reel is $4,000 \mathrm{pcs}$
2) All dimensions are millimeters (tolerance : $\pm 0.2 \mathrm{~mm}$)
3) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5)

Bin Code:

(a) (b): Forward Voltage bin (refer to page 8)
(C) Chromaticity bin (refer to page 9-10)
(e) f : Luminous Flux bin (refer to page 7)
b) Lot Number

The lot number is composed of the following characters:

A4NUS3

SPMWH1228FD5WARUS3 A4RUS3 AA II
(1)(2)(3)(4)(5)(6)(8)(9/1 (a)(b)(C)/4,000 pcs |||
-my mye
(1)(2)(3)(4)(5)(6)(7)8)(9 / 1(a)(b) $/ 4,000 \mathrm{pcs}$
(1)
: Production site
(S: Giheung, Korea,
G: Tianjin, China)
(2) : 3 (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B: 2017...)
(5) : Month (1~9, A, B, C)
(6)(7)(8) : Day $(1 \sim 9, A, B \sim V)$
(a)(b) : Product serial number (001~999)

9. Packing Structure

a) Packing Process

Reel
 - ${ }^{\text {™ }}$
 A4RUS3

SPMWH1228FD5WARUS3 A4RUS3 AA ||I|| G3AYC4001 / 10AA / 4,000 pcs II cift guy

c ${ }^{7} \mathrm{~N}_{\text {us }}$
 A4RUS3

SPMWH1228FD5WARUS3 A4RUS3 AA IIIIIIIIIIIIIIIIIIIII|IIIIIIIIII|I|I|IIIIIIIIII G3AYC4001 / 10AA / 4,000 pcs || ant sux

Outer Box

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

SIMSUNG
b) Aluminum Vinyl Packing Bag

주의 사항

이 알루미늡 지펴 백은 슴기 및 정전기로부터 제풍을 보호하 기 위하여 제작되었습니다. 개봉 후에는 족시 술더 작업울 실 시하는 것을 퀀장합니다.
슉기 및 정전기로푸터 제품을 보호 하기 위해서 개봉 후 사용 하지 않는 자재는 븐 잭엥 넣어 노련 하시기 바랍니다. 사용하 지 않는 자재률 븐 팩에 넣을 매는 반드시 동붕된 드라이 패 화 항께 넣로 지퍼부분을 완전하게 밀항하여 주시기 바랍니다.

Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature $0 \sim 40^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}$).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for 1 hour at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung Electronics Co., Ltd. is a global leader in technology,
opening new possibilities for people everywhere. Through relentless
innovation and discovery, we are transforming the worlds of
TVs, smartphones, tablets, PCs, cameras, home appliances, printers,
LTE systems, medical devices, semiconductors and LED solutions.
We employ 286,000 people across 80 countries with annual sales of US\$216.7 billion. To discover more, please visit www.samsungled.com.

Copyright © 2015 Samsung Electronics Co., Ltd. All rights reserved
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

