Middle Power LED Series

3030

LM302Z Plus

CRI80

Features \& Benefits

- 0.6 W class middle power LED
- EMC resin for high reliability
- Standard form factor for design flexibility $(3.0 \times 3.0 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information 4
3. Typical Characteristics Graphs 11
4. Outline Drawing \& Dimension 14
5. Reliability Test Items \& Conditions 15
6. Soldering Conditions 16
7. Tape \& Ree ------------------------ 17
8. Label Structure 19
9. Packing Structure 20
10. Precautions in Handling \& Use 22

1. Characteristics

a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Operating Solder Temperature	Ta	$-40 \sim+105$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	-
Forward Current	$I_{\text {F }}$	200	mA	-
Pulse Forward Current	$\mathrm{Ifp}_{\text {p }}$	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Nominal ССТ (K)	Rank	Bin	Min.	Typ.	Max.	Unit
Forward Voltage (V_{F})		GB	BZ	5.8	-	6.0	V
			B1	6.0	-	6.2	
			B2	6.2		6.4	
			B3	6.4	-	6.6	
Reverse Voltage (@ 5 mA)				0.7	-	1.2	V
Color Rendering Index (R_{a})		5		80	-	-	-
Thermal Resistance (junction to solder point)				-	12	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Beam Angle				-	120	-	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, C R I= \pm 3$

2. Product Code Information

a) Luminous Flux Bins ($\mathrm{IF}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Nominal CCT (K)	CRI Min.	Product Code	Flux Bin	Flux Range ($\Phi_{\mathrm{v}}, \mathrm{Im}$)
2700	80	SPMWH3326FP5GBW	SF	124-133
			SG	133-142
3000	80	SPMWH3326FP5GBV ${ }_{\text {c }}$ S0	SF	124-133
			SG	133-142
3500	80	SPMWH3326FP5GBU $ぇ$ SO	SG	133-142
			SH	142-151
4000	80	SPMWH3326FP5GBT \downarrow S0	SG	133-142
			SH	142-151
5000	80	SPMWH3326FP5GBR¿S0	SG	133-142
			SH	142-151
5700	80	SPMWH3326FP5GBQ	SG	133-142
			SH	142-151
6500	80	SPMWH3326FP5GBP ${ }_{\text {c }}$ S0	SG	133-142
			SH	$142-151$

Note:

"ڭ̌" can be "0" (Whole Bin), "3" (MacAdam 3-step), "Y" (Kitting)
b) Kitting Rule

1) Y Kitting bin Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (Color).
2. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)

[Kitting example]

[Binning Information]

	Bin \#1	Bin \#2
CIE	U	U
	N	R
	P	S
	Q	T
IV	SF	SF
	SF	SG
	SG	SG
	SG	SH
	SH	SH

c) Color Bins ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)
Nominal CCT
(K)
CRI
Min.
d) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Nominal CCT	CRI	Product Code	Voltage Rank	Voltage Bin	Voltage Range
-	-	-	GB	BZ	5.8 ~ 6.0
				B1	$6.0 \sim 6.2$
				B2	$6.2 \sim 6.4$
				B3	$6.4 \sim 6.6$

e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

f) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

MacAdam	CCT	Center point		Major-axis	Minor-axis	Rotation
	(K)	CIE x	CIE y	a	b	Ф
3 step	2700	0.4578	0.4101	0.0081	0.0042	53.70
	3000	0.4338	0.4030	0.0083	0.0041	53.22
	3500	0.4073	0.3917	0.0093	0.0041	54.00
	4000	0.3818	0.3797	0.0094	0.0040	53.72
	5000	0.3447	0.3553	0.0082	0.0035	59.62
	5700	0.3287	0.3417	0.0075	0.0032	59.10
	6500	0.3123	0.3282	0.0067	0.0029	58.57
5 step	2700	0.4578	0.4101	0.0135	0.0070	53.70
	3000	0.4338	0.4030	0.0138	0.0068	53.22
	3500	0.4073	0.3917	0.0155	0.0068	54.00
	4000	0.3818	0.3797	0.0157	0.0067	53.72
	5000	0.3447	0.3553	0.0137	0.0058	59.62
	5700	0.3287	0.3417	0.0125	0.0053	59.10
	6500	0.3123	0.3282	0.0112	0.0048	58.57

Note: Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$
e) Chromaticity Region \& Coordinates

Region	2700K		3000K		3500K		4000K	
	CIE x	CIE y	CIE x	CIE y	CIE x	CIE y	CIE x	CIE y
1	0.4521	0.4142	0.4283	0.4071	0.4018	0.3957	0.3764	0.3837
2	0.4619	0.4216	0.4382	0.4146	0.4125	0.4046	0.3871	0.3926
3	0.4675	0.4175	0.4437	0.4105	0.418	0.4005	0.3925	0.3887
4	0.4634	0.4059	0.4393	0.3989	0.4128	0.3877	0.3872	0.3758
5	0.4537	0.3986	0.4293	0.3913	0.4022	0.3788	0.3765	0.3668
6	0.4481	0.4028	0.4239	0.3954	0.3966	0.3828	0.3711	0.3707
7	0.4544	0.4126	0.4305	0.4054	0.404	0.3941	0.3786	0.3821
8	0.4603	0.417	0.4364	0.41	0.4104	0.3994	0.385	0.3874
9	0.4636	0.4145	0.4397	0.4075	0.4137	0.397	0.3882	0.3851
10	0.4612	0.4076	0.4371	0.4005	0.4106	0.3893	0.385	0.3773
11	0.4553	0.4032	0.4311	0.396	0.4042	0.384	0.3786	0.372
12	0.452	0.4057	0.4279	0.3984	0.4009	0.3864	0.3754	0.3743

Region	5000K		5700K		6500K	
	CIE x	CIE y	CIE x	CIE y	CIE x	CIE y
1	0.3397	0.3583	0.3242	0.3445	0.3082	0.3307
2	0.3482	0.367	0.332	0.3524	0.3153	0.3377
3	0.3532	0.364	0.3365	0.3496	0.3194	0.3352
4	0.3497	0.3524	0.3333	0.339	0.3164	0.3257
5	0.3412	0.3436	0.3254	0.331	0.3093	0.3187
6	0.3362	0.3465	0.3209	0.3338	0.3052	0.3212
7	0.3417	0.3571	0.326	0.3434	0.3098	0.3297
8	0.3468	0.3623	0.3307	0.3481	0.3141	0.3339
9	0.3498	0.3605	0.3334	0.3464	0.3166	0.3324
10	0.3477	0.3535	0.3314	0.3401	0.3148	0.3267
11	0.3426	0.3483	0.3267	0.3353	0.3105	0.3225
12	0.3396	0.35	0.324	0.3369	0.308	0.324

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT : 2700K (80 CRI)

CCT : 3500K (80 CRI)

CCT : 5000 K (80 CRI)

CCT : 6500K (80 CRI)

CCT : 3000K (80 CRI)

CCT : 4000K (80 CRI)

CCT : 5700K (80 CRI)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

c) Temperature Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$)

c) Color Shift Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{IF}=150 \mathrm{~mA}$)

e) Derating curve

f) Beam angle Characteristics

4. Outline Drawing \& Dimension

[RECOMMENDED PCB SOLDER PAD]

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.
5. Reliability Test Items \& Conditions
a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 150 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 150 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, \mathrm{DC} 150 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 150 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} / 20 \mathrm{~min} \leftrightarrow 85^{\circ} \mathrm{C} / 20 \mathrm{~min}$, sweep 100 min cycle on/off: each $5 \mathrm{~min}, \mathrm{DC} 150 \mathrm{~mA}$	100 cycles	22
Thermal Cycle	$-40^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 100^{\circ} \mathrm{C} / 15 \mathrm{~min}$ \rightarrow Hot plate $180^{\circ} \mathrm{C}$	500 cycles	100
High Temperature Storage	$100^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storaqe	$-40^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)		5 times	30
ESD (MM)	$R_{1}: 10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 0$ C: 200 pF	5 times	30
Vibration Test	20~2000~20 Hz, $200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $\mathrm{X}, \mathrm{Y}, \mathrm{Z} 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ 3 shocks each $X-Y-Z$ axis	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol		Limit	
		($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)	Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

\longleftarrow Use Feed Direction

Notes:

1) Quantity: The quantity/reel is $5,000 \mathrm{pcs}$
2) Cumulative Tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion Strength of Cover Tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 4)
Bin Code:
(a)(b): Forward Voltage bin (refer to page 7)
(c)(d): Chromaticity bin (refer to page 8-10)
(e) \ddagger : Luminous Flux bin (refer to page 5)
b) Lot Number

The lot number is composed of the following characters:

. ${ }^{4}{ }^{4 s}$
 B1RUSH

SPMWH3326FP5GBR0SO B1RUSH 01
II
(1)(2)(3)(4)(5)(7)(8)(9/ $1001 / 5,000 \mathrm{pcs}$
||III||||||||||||||||||||||||||||||||||||||
ansuye
(1)(2) : Production site (G8: China Xiamen)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (C: 2018, D: 2019, E: 2020...)
(5) : Month (1~9, A, B, C)
(6) : Day $(1 \sim 9, A, B \sim V)$
(7) (8) : P Product serial number (001~999)

9. Packing Structure

a) Packing Process (The quantity of PKG on the Reel to be Max $5,000 \mathrm{pcs}$)

Reel

c $7 \mathrm{~N}_{\text {us }}$
 B1RUSH

SPMWH3326FP5GBR0SO B1RUSH 01 II G8AC14001 / 1001 / 5,000 pcs || ant sux

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

B1RUSH

b）Packing Process for kitting（The quantity of PKG on the Reel to be Max 5，000pcs）

Reel

Kitting＇ A ＇

${ }^{-9} \mathrm{Na}_{\text {us }}$

B1＊YSH

SPMWH3326MD5WA \star YSO B1 \star YSH 01
｜｜
G8AC14001／ 1001 ／5，000 pcs
｜｜

Kitting＇B＇

${ }^{\text {c }} \mathrm{N}_{\text {us }}$

B1 太YSH
SPMWH3326MD5WA \star YSO B1 \star YSH 01 ｜｜ G8AC14001／I001／5，000 pcs ｜｜｜

Aluminum Vinyl Packing Bag

Kiting＇A＇	Kititing＇B＇
${ }^{\text {ch }}{ }_{\text {vs }} \quad$ B1太YSH	－790 ${ }_{\text {us }}$ B1太YSH
WH3326FP5GB \star YSO B1 \star YSH 01	SPMWH3326FP5GB \star YSO $\mathrm{B} 1 \star$ YSH 01
m	mis

Outer Box

Kitting＇B＇
－${ }^{\text {CN }}$

B1 太YSH

SPMWH3326FP5GB $\begin{gathered}\text { YSO B1 } \\ \text { BSH } \\ 01\end{gathered}$ II G8AC14001／I001／50，000 pcs ｜｜ ［BOX Label］

Note：＂\star＂can be Nominal CCT code

Material：Paper（SW3B（B））

Type	Size（mm）			Note
	I	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

$\mathrm{Ni}_{\text {us }} \quad$ B1RUSH
SPMWH3326FP5GBR0S0 B1RUSH 01 G8AC14001 / 1001 / 5,000 pcs \|

2. Peak package body temperature: 240 t
3. Ater this bag is opened, devices that will be subjected to reflow soldior or other high temperature processes must be:
a. Mounted within 672 hours at factory conditions of equal to or less than $30 \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Sored at < 10% RH
a.Humidity Indicator Card is $>/ 60 \%$ when read at $23 \pm 5{ }^{\circ}$ c, or b. 2 a is not met.
4. If baking is required, devioes must be baked for $10 \sim 24$ hours at $60 \pm 5{ }^{\circ} \mathrm{C}$

Note: I device containers cannot be subjected to high temperature or bake procedure,
Bag seal due date:
(r blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

주의 사향

이 알류미눕 지퍼 밴은 合기 및 정전기료부터 제풓을 로호하 기 위하여 제작되였쇼니다. 개상 후에는 족시 술더 작업울 실 시하는 것을 권장합니다.
슊기 및 정진기ㄹㅗㅜㅜㅌㅓ 제품을 보호 하기 위해서 개봉 후 사용 하지 않는 자재는 븐 吼엥 놓어 쏘련 하시기 바랍니다. 사용하
 퐈 합껫 넣포 지퍼부룰을 완전하게 밀항하여 주시기 바랍니다.

- Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Aluminum Vinyl Packing Bag
c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current-proof function, customers are recommended to apply resistors to prevent sudden change of the current caused by slight shift of the voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA is recommended to use.
3) When the LEDs illuminate, operating current should be decided after considering the ambient maximum temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed by a sealed container with nitrogen gas injected (shelf life of sealed bags: 12 months, temperature $\sim 40^{\circ} \mathrm{C}, \sim 90 \% \mathrm{RH}$).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leak current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires (fixtures). In order to prevent these problems, we recommend users to know the physical properties of the materials used in luminaires, and they must be selected carefully.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung Electronics Co., Ltd. uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (Cl) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as: rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. inspires the world and shapes the future with
transformative ideas and technologies that redefine the worlds of TVs, smartphones, wearable devices, tablets, cameras, digital appliances, printers, medical equipment, network systems, and semiconductor and LED solutions. We are also leading in the Internet of Things space with the open platform SmartThings, our broad range of smart devices, and through proactive cross-industry collaboration. We employ 319,000 people across 84 countries with annual sales of US $\$ 196$ billion. To discover more, and for the latest news, feature articles and press material, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2016 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA

