Middle Power LED Series 2835 0.5W Zener-in Ra80

LM281BZ+

Designed for better Im/\$ (Ambient, Linear)

Features \& Benefits

- 0.5W Class mid power LED
- Standard form factor for design flexibility $(2.8 \times 3.5 \times 0.65 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information 6
3. Typical Characteristics Graphs 16
4. Outline Drawing \& Dimension 19
5. Reliability Test Items \& Conditions 20
6. Soldering Conditions 21
7. Tape \& Reel 22
8. Label Structure 25
9. Packing Structure 26
10. Precautions in Handling \& Use 30
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
LED J unction Temperature	T ${ }_{\text {j }}$	115	${ }^{\circ} \mathrm{C}$	-
Forward Current	I_{F}	160	mA	-
Peak Pulsed Forward Current	1 fp	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	5	kV	-

Note:

Proper current derating must be observed to maintain junction temperature below the maximum at all time.
b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Item	Unit	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (VF)	V		A1	2.8		2.9
		WA	A2	2.9		3.0
		or	A3	3.0		3.1
		WK	A4	3.1		3.2
			A5	3.2		3.3
Reverse Voltage (@ 5 mA)				0.7		1.2
Color Rendering Index (Ra)	-	5		80	-	-
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$			-	25	-
Beam Angle	\bigcirc			-	120	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}, \mathrm{CRI}= \pm 3$
b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3$

2. Product Code Information

$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

a) Luminous Flux Bins ($I_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Note:

"ぇ" can be "0" (Whole bin), "M" (Quarter bin) or "K" (Kitting bin) of the color binning
b) Kitting rule

1) Kitting bin Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same VF rank such as (A1+A1), (A2+A2), (A3+A3), (A4+A4) or (A5+A5)
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example]

D	E	F	G
9	A	B	C
5	6	7	8
1	2	3	4

[Binning Information]
VF
c) Color Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Note: "ז̌" can be "SA", "SC", "SE" or "SG" of luminous flux bin
d) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates

Region	CIEx	CIE y	Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIE y
		W rank	(2700 K)			V rank (3000 K)					
W1	0.4373	0.3893	W9	0.4465	0.4071	V1	0.4147	0.3814	V9	0.4221	0.3984
	0.4418	0.3981		0.4513	0.4164		0.4183	0.3898		0.4259	0.4073
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
	0.4428	0.3906		0.4523	0.4085		0.4203	0.3833		0.4281	0.4006
W2	0.4428	0.3906	WA	0.4523	0.4085	V2	0.4203	0.3833	VA	0.4281	0.4006
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
	0.4483	0.3919		0.4582	0.4099		0.4259	0.3853		0.4342	0.4028
W3	0.4483	0.3919	WB	0.4582	0.4099	V3	0.4259	0.3853	VB	0.4342	0.4028
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
	0.4538	0.3931		0.4641	0.4112		0.4316	0.3873		0.4403	0.4049
W4	0.4538	0.3931	WC	0.4641	0.4112	V4	0.4316	0.3873	VC	0.4403	0.4049
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
	0.4646	0.4034		0.4756	0.4221		0.4418	0.3981		0.4513	0.4164
	0.4593	0.3944		0.4700	0.4126		0.4373	0.3893		0.4465	0.4071
W5	0.4418	0.3981	WD	0.4513	0.4164	V5	0.4183	0.3898	VD	0.4259	0.4073
	0.4465	0.4071		0.4562	0.4260		0.4221	0.3984		0.4299	0.4165
	0.4523	0.4085		0.4624	0.4274		0.4281	0.4006		0.4364	0.4188
	0.4475	0.3994		0.4573	0.4178		0.4242	0.3919		0.4322	0.4096
W6	0.4475	0.3994	WE	0.4573	0.4178	V6	0.4242	0.3919	VE	0.4322	0.4096
	0.4523	0.4085		0.4624	0.4274		0.4281	0.4006		0.4364	0.4188
	0.4582	0.4099		0.4687	0.4289		0.4342	0.4028		0.4430	0.4212
	0.4532	0.4008		0.4634	0.4193		0.4300	0.3939		0.4385	0.4119
W7	0.4532	0.4008	WF	0.4634	0.4193	V7	0.4300	0.3939	VF	0.4385	0.4119
	0.4582	0.4099		0.4687	0.4289		0.4342	0.4028		0.4430	0.4212
	0.4641	0.4112		0.4750	0.4304		0.4403	0.4049		0.4496	0.4236
	0.4589	0.4021		0.4695	0.4207		0.4359	0.3960		0.4449	0.4141
W8	0.4589	0.4021	WG	0.4695	0.4207	V8	0.4359	0.3960	VG	0.4449	0.4141
	0.4641	0.4112		0.4750	0.4304		0.4403	0.4049		0.4496	0.4236
	0.4700	0.4126		0.4813	0.4319		0.4465	0.4071		0.4562	0.4260
	0.4646	0.4034		0.4756	0.4221		0.4418	0.3981		0.4513	0.4164

shmsung
e) Chromaticity Region \& C oordinates

Region	CIEx	CIEy	Region	CIE x	CIE y	Region	CIE x	CIEy	Region	CIE x	CIEy
	U rank (3500 K)							T rank	(4000 K)		
U1	0.3889	0.3690	U9	0.3941	0.3848	T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3915	0.3768		0.3968	0.3930		0.3726	0.3612		0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3744	0.3685		0.3782	0.3837
	0.3953	0.3720		0.4010	0.3882		0.3686	0.3649		0.3719	0.3797
U2	0.3953	0.3720	UA	0.4010	0.3882	T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3783	0.3646		0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3804	0.3721		0.3847	0.3877
	0.4017	0.3751		0.4080	0.3916		0.3744	0.3685		0.3782	0.3837
U3	0.4017	0.3751	UB	0.4080	0.3916	T3	0.3783	0.3646	TB	0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3840	0.3681		0.3887	0.3836
	0.4116	0.3865		0.4186	0.4037		0.3863	0.3758		0.3912	0.3917
	0.4082	0.3782		0.4150	0.3950		0.3804	0.3721		0.3847	0.3877
U4	0.4082	0.3782	UC	0.4150	0.3950	T4	0.3840	0.3681	TC	0.3887	0.3837
	0.4116	0.3865		0.4186	0.4037		0.3898	0.3716		0.3950	0.3875
	0.4183	0.3898		0.4259	0.4073		0.3924	0.3794		0.3978	0.3958
	0.4147	0.3814		0.4221	0.3984		0.3863	0.3758		0.3912	0.3917
U5	0.3915	0.3768	UD	0.3968	0.3930	T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3941	0.3848		0.3996	0.4015		0.3744	0.3685		0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3763	0.3760		0.3802	0.3916
	0.3981	0.3800		0.4040	0.3966		0.3702	0.3722		0.3736	0.3874
U6	0.3981	0.3800	UE	0.4040	0.3966	T6	0.3744	0.3685	TE	0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3804	0.3721		0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3825	0.3798		0.3869	0.3958
	0.4048	0.3832		0.4113	0.4001		0.3763	0.376		0.3802	0.3916
U7	0.4048	0.3832	UF	0.4113	0.4001	T7	0.3804	0.3721	TF	0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3863	0.3758		0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3887	0.3836		0.3937	0.4001
	0.4116	0.3865		0.4186	0.4037		0.3825	0.3798		0.3869	0.3958
U8	0.4116	0.3865	UG	0.4186	0.4037	T8	0.3863	0.3758	TG	0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3924	0.3794		0.3978	0.3958
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4183	0.3898		0.4259	0.4073		0.3887	0.3836		0.3937	0.4001

SHMSUNG
e) Chromaticity Region \& Coordinates

Region	CIE x	CIEy									
		R rank	(5000 K)			Q rank (5700 K)					
R1	0.3366	0.3369	R9	0.3374	0.3554	Q1	0.3218	0.3298	Q9	0.3211	0.3407
	0.3369	0.3431		0.3371	0.3493		0.3222	0.3243		0.3215	0.3353
	0.3407	0.3460		0.3411	0.3522		0.3258	0.3275		0.3254	0.3388
	0.3403	0.3398		0.3415	0.3587		0.3256	0.3331		0.3252	0.3444
R2	0.3403	0.3398	RA	0.3415	0.3587	Q2	0.3256	0.3331	QA	0.3252	0.3444
	0.3407	0.3460		0.3411	0.3522		0.3258	0.3275		0.3254	0.3388
	0.3446	0.3491		0.3451	0.3554		0.3294	0.3306		0.3293	0.3423
	0.3440	0.3427		0.3457	0.3621		0.3294	0.3364		0.3293	0.3481
R3	0.3446	0.3491	RB	0.3451	0.3554	Q3	0.3294	0.3364	QB	0.3293	0.3481
	0.3440	0.3427		0.3457	0.3621		0.3294	0.3306		0.3293	0.3423
	0.3477	0.3458		0.3500	0.3655		0.3330	0.3338		0.3332	0.3458
	0.3485	0.3522		0.3492	0.3587		0.3331	0.3398		0.3333	0.3518
R4	0.3485	0.3522	RC	0.3492	0.3587	Q4	0.3331	0.3398	QC	0.3333	0.3518
	0.3477	0.3458		0.3500	0.3655		0.3330	0.3338		0.3332	0.3458
	0.3514	0.3487		0.3542	0.3690		0.3366	0.3369		0.3371	0.3493
	0.3524	0.3554		0.3533	0.3620		0.3369	0.3431		0.3374	0.3554
R5	0.3371	0.3493	RD	0.3376	0.3616	Q5	0.3215	0.3353	QD	0.3207	0.3462
	0.3369	0.3431		0.3374	0.3554		0.3218	0.3298		0.3211	0.3407
	0.3407	0.3460		0.3415	0.3587		0.3256	0.3331		0.3252	0.3444
	0.3411	0.3522		0.3420	0.3652		0.3254	0.3388		0.3250	0.3501
R6	0.3407	0.3460	RE	0.3415	0.3587	Q6	0.3254	0.3388	QE	0.3250	0.3501
	0.3411	0.3522		0.3420	0.3652		0.3256	0.3331		0.3252	0.3444
	0.3451	0.3554		0.3463	0.3687		0.3294	0.3364		0.3293	0.3481
	0.3446	0.3491		0.3457	0.3621		0.3293	0.3423		0.3292	0.3539
R7	0.3446	0.3491	RF	0.3457	0.3621	Q7	0.3293	0.3423	QF	0.3292	0.3539
	0.3451	0.3554		0.3463	0.3687		0.3294	0.3364		0.3293	0.3481
	0.3492	0.3587		0.3507	0.3724		0.3331	0.3398		0.3333	0.3518
	0.3485	0.3522		0.3500	0.3655		0.3332	0.3458		0.3334	0.3578
R8	0.3485	0.3522	RG	0.3500	0.3655	Q8	0.3332	0.3458	QG	0.3334	0.3578
	0.3492	0.3587		0.3507	0.3724		0.3331	0.3398		0.3333	0.3518
	0.3533	0.3620		0.3551	0.3760		0.3369	0.3431		0.3374	0.3554
	0.3524	0.3554		0.3542	0.3690		0.3371	0.3493		0.3376	0.3616

shmsung
e) Chromaticity Region \& Coordinates

Region	CIEx	CIEy	Region	CIE x	CIE y
		P rank	(6500 K)		
P1	0.3068	0.3113	P9	0.3048	0.3207
	0.3106	0.3150		0.3089	0.3249
	0.3098	0.3199		0.3080	0.3298
	0.3058	0.3160		0.3038	0.3256
P2	0.3106	0.3150	PA	0.3089	0.3249
	0.3144	0.3186		0.313	0.3290
	0.3137	0.3238		0.3123	0.3341
	0.3098	0.3199		0.3080	0.3298
P3	0.3144	0.3186	PB	0.3130	0.3290
	0.3183	0.3224		0.3172	0.3332
	0.3177	0.3278		0.3166	0.3384
	0.3137	0.3238		0.3123	0.3341
P4	0.3183	0.3224	PC	0.3172	0.3332
	0.3221	0.3261		0.3214	0.3373
	0.3218	0.3317		0.3210	0.3427
	0.3177	0.3278		0.3166	0.3384
P5	0.3058	0.3160	PD	0.3038	0.3256
	0.3098	0.3199		0.3080	0.3298
	0.3089	0.3249		0.3072	0.3348
	0.3048	0.3207		0.3028	0.3304
P6	0.3098	0.3199	PE	0.3080	0.3298
	0.3137	0.3238		0.3123	0.3341
	0.3130	0.3290		0.3115	0.3391
	0.3089	0.3249		0.3072	0.3348
P7	0.3137	0.3238	PF	0.3123	0.3341
	0.3177	0.3278		0.3166	0.3384
	0.3172	0.3332		0.3160	0.3436
	0.313	0.3290		0.3115	0.3391
P8	0.3177	0.3278	PG	0.3166	0.3384
	0.3218	0.3317		0.3210	0.3427
	0.3214	0.3373		0.3206	0.3481
	0.3172	0.3332		0.3160	0.3436

Note: Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$
3. Typical Characteristics Graphs
a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

CCT: 2700 K (80 CRI)

CCT: 3500 K (80 CRI)

CCT: 5000 K (80 CRI)

CCT: 3000 K (80 CRI)

CCT: 4000 K (80 CRI)

CCT: 5700 K (80 CRI)

Relative Intensity vs. Wavelength

CCT: 6500 K (80 CRI)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

c) Temperature Characteristics ($\mathbf{I F}_{\mathrm{F}}=\mathbf{1 5 0} \mathbf{~ m A}$)

d) Color Shift Characteristics ($\mathrm{IF}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25{ }^{\circ} \mathrm{C}, \mathrm{DC} 160 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85{ }^{\circ} \mathrm{C}, ~ D C 160 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$85{ }^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \mathrm{DC} 160 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40{ }^{\circ} \mathrm{C}, ~ D C 160 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45{ }^{\circ} \mathrm{C} \sim 85{ }^{\circ} \mathrm{C}$, each 20 min , on/off 5 min Temp. Change time 100 min, DC 160 mA	100 cycles	22
Temperature Cycle	$-45^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 125{ }^{\circ} \mathrm{C} / 15 \mathrm{~min}$	200 cycles	100
High Temperature Storage	$120{ }^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	-40 ${ }^{\circ} \mathrm{C}$	1000 h	11

ESD (HBM)

$\mathrm{R}_{1}: 10 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{z}}: 1.5 \mathrm{k} \Omega$
C: 100 pF
V : $\pm 5 \mathrm{kV}$
30
b) Criteria for J udging the Damage

Item	Symbol	$\begin{aligned} & \text { Test Condition } \\ & \left(T_{s}=25{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Limit	
			Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	Init. Value *0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	Init. Value *0.7	Init. Value * 1.1

shmsung
6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300{ }^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

b) Reel Dimension (max 4,000 pcs)

Notes:

1) Quantity: The quantity/reel is $4,000 \mathrm{pcs}$
2) All dimensions are millimeters (tolerance : $\pm 0.2 \mathrm{~mm}$)
3) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
c) Reel Dimension (max $\mathbf{1 2 , 0 0 0} \mathbf{~ p c s}$)
(unit: mm)

$\mathrm{A} \pm 2$	$\mathrm{~B} \pm 0.2$	$\mathrm{C} \pm 0.2$	$\mathrm{D} \pm 0.2$	$\mathrm{E} \pm 0.2$	$\mathrm{~F} \pm 0.3$	$\mathrm{G} \pm 0.3$	$\mathrm{H} \pm 0.3$	$\mathrm{~T} 1 \pm 0.2$
$\varnothing 290$	$\varnothing 79.5$	$\varnothing 14.3$	2.5	11.5	8.7	12.7	23.1	2

Notes:

1) Quantity: The quantity/reel is $12,000 \mathrm{pcs}$
2) All dimensions are millimeters (tolerance : $\pm 0.2 \mathrm{~mm}$)
3) Packaging: P / N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 6)

Bin Code:

(a)(b): Forward Voltage bin (refer to page 10)
(c)(d): Chromaticity bin (refer to page 11-18)
(e) f): Luminous Flux bin (refer to page 7)
b) Lot Number

The lot number is composed of the following characters:

${ }^{c}$ 데

SPMWH3228FD5WAR0SG A4R1SG II (1)(2)(3)(4)(6(7)8(9/1@(b)C/4 4000 pcs |||

```
Mmyyx:
```

(1)(2)(3)(4)(5)(6)(7)(9) $/ 1$ (a)(b) $/ 4,000 \mathrm{pcs}$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : 3 (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B: 2017...)
(5) : Month (1~9, A, B, C)
(6) : Day (1~9, A, B~V)
(7)8(9) (a)(b)(C) : Product serial number

9. Packing Structure

a) Packing Process

Reel
${ }^{C} \mathrm{Pl}_{\mathrm{us}} \quad$ A4R1SG
SPMWH3228FD5WAR0SG A4R1SG ||| G3AYC4001 / 10AA / 4000 pcs IIIIIIIIIIII|IIIIIIIIII|IIIIIIIIIIIIIIII

cilu ${ }_{\text {us }}$ A4R1SG

SPMWH3228FD5WAR0SE A4R1SG
 G3AYC4001 / 10AA / 4000 pcs
 - mancip

Outer Box

Material: Paper (SW3B (B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

shmsung
b) Packing Process (The quantity of PKG on the Reel to be Max 12,000 pcs)

SPMWH3228FD5WKROSG A4R1SG ||| G3AYC4001 / 10AA / 180000 pcs

c) Packing Process for kitting

Reel

Kitting ' A '

${ }^{c} 7 \mathrm{~N}_{\text {us }}$
 A3 \star 1SG

SPMWH3228FD5WA \star KSG A3 $\star 1$ SG
 G3AW94001 / 10AA / 4000 pcs |||||||||||||||||||||||||||||||||||||||

Kitting 'B'

SPMWH3228FD5WA $\star K S G \quad$ A3 \star CSG
II G3AW94001 / 10AA / 4000 pcs ||| ansuye

Aluminum Vinyl Packing Bag

Kitting ' A '
 ${ }_{c} 7 \mathrm{~N}_{\text {us }}$
 A3 \star 1SG
 SPMWH3228FD5WA \star KSG A3 $\star 1$ SG

 G3AW94001 / 10AA / 4000 pcs |||||||||||||||||||||||||||||||||||||||

Kitting 'B'
c7 ${ }_{\text {us }}$ A3 \star CSG
SPMWH3228FD5WA \star KSG A3 \star CSG
 G3AW94001 / 10AA / 4000 pcs |||

Outer Box

Kitting ' A '
 c $7 \mathrm{NI}_{\text {us }}$
 A $3 \star$ 1SG

SPMWH3228FD5WA \star KSG A3 $\star 1$ SG || G3AW94001 / 10AA / 20000 pcs
||
And

Kitting ' B '

c $7 \mathrm{~T}_{\text {us }} \quad \mathrm{A} 3 \star$ CSG

SPMWH3228FD5WA \star KSG A3 \star CSG
 G3AW94001 / 10AA / 20000 pcs
|||||||||||||||||||||||||||||||||||||
[BOX Label]

Material: Paper (SW3B (B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

c) Aluminum Vinyl Packing Bag
. ${ }^{4} \mathrm{H}_{\mathrm{us}}$
A4R1SG
SPMWH3228FD5WAR0SG A4R1SG
III
G3AYC4001 / 10AA / 4000 pcs
IIII|||||||||||||||||||||||||||||||||||||||

1. Sherf life in mealed bag: 12 months at $<40 \mathrm{t}$ and $<90 \mathrm{~s}$ relative humidity (RH)
2. Peak pockage body tempernture: 250 t
3. Ater this bogis opened, devions that will be mbjected to refow soldor or cther hich temperatuav procosses must be:
a. Mounted within 672 hours at factory conditions of equal to or lose than 30t /60\% FHF, or
b. Stoend at < 10\$ RH
4. Deviows requim bake, befoev mounting, if:
a. Humidity Indicator Cand is $2 / 605$ when road at $23 \pm 5 \mathrm{c}$, or b. 2 a is not met.
5. Fhaking is roguired, devioes murt be baked for $10-24$ hours at $60 \pm 5 \mathrm{C}$

Note: 7 devise containers cannot be subjected to high temperatury or shorter bake times are desied, refeence TFC/JEDEC J-SID-033 for bake procedure,
Bag real due date: \qquad
(f blank, nee cole label)
Note: Level and body tenperatum by IPCIJEDEC J-STD-000

주의 사항

 기 위하이 계작ㅍㅇ였슨ㄴㄷㅏ. 개풍 후에는 죽시 술더 작엽을 실 시하는 겻을 줜장합니다.

 지 않는 자졍를 븐 맥에 덕을 매는 빤드시 둥항연 드라이 재

Important

This Al Zipper bag is designed to protect the enelosed products from molsture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
d) Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature 0~40 ${ }^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}$).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be: a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30{ }^{\circ} \mathrm{C} / 60 \%$ RH*Note 1 , or b. Mounted within 24 hours (1 day) at an assembly line with a condition of more than $30{ }^{\circ} \mathrm{C} / 70 \%$ RH*Note 2, or c. Stored at <10 \% RH.
*Note 1, 2: IPC/J EDEC J -STD-033A, Recommended Equivalent Total Floor Life Table

Paxnec Tiveava andy Thidhnem	Myintes Sannthy lever	Maimum-Hrseir Relviveremith						
		4.96	8 ta	cos	H0w	㫛	10\%	
Body Thickness .21 mm	Level 29	*	-	28	1	1	1	$30^{\circ} \mathrm{C}$
		*	\%	=	2	1	1	$25^{\circ} \mathrm{C}$
		-	-	-	2	2	1	$20{ }^{\circ} \mathrm{C}$

6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
8) Devices must be baked for 1 hour at $60 \pm 5{ }^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd

Samsung Electronics Co. Ltd inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and semiconductor and LED solutions. For the latest news, please visit the Samsung Newsroom at http://news.samsung.com

Copyright © 2017 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

