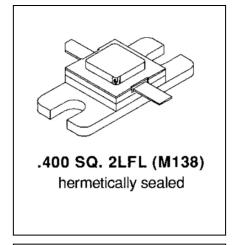
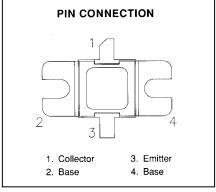


140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013

PHONE: (215) 631-9840 FAX: (215) 631-9855

MS2422


RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS


Features

- DESIGNED FOR HIGH POWER PULSED IFF, DME, AND TACAN APPLICATIONS
- 350 W (typ.) IFF 1030 1090 MHz
- 300 W (min.) DME 1025 1150 MHz
- 290 W (typ.) TACAN 960 1215 MHz
- 960 1215 MHz
- GOLD METALLIZATION
- P_{OUT} = 300W MINIMUM
- $G_P = 6.3 \text{ dB MINIMUM}$
- INFINITE VSWR CAPABILITY @ RATED CONDITIONS
- EMITTER BALLASTED
- COMMON BASE

DESCRIPTION:

The MS2422 is a gold metallized silicon, NPN power transistor designed for applications requiring high peak power and low duty cycles such as IFF, DME, and TACAN. The MS2422 is designed with internal input/output matching resulting in improved broadband performance and low thermal resistance.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	65	V
V _{CES}	Collector-Emitter Voltage	65	V
V _{EBO}	Emitter-Base Voltage	3.5	V
I _C	Device Current	22	Α
P _{DISS}	Power Dissipation	875	W
TJ	Junction Temperature	200	°С
T _{STG}	Storage Temperature	-65 to +150	οС

Thermal Data

R _{TH(J-C)}	Junction-case Thermal Resistance	0.20	°C/W
----------------------	----------------------------------	------	------

ELECTRICAL SPECIFICATIONS (Tcase = 25°C) STATIC

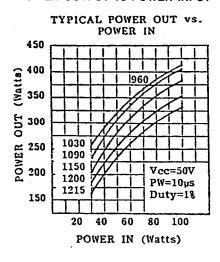
Symbol	Test Conditions			Value		
Symbol			Min.	Тур.	Max.	Unit
BV _{CBO}	I _C = 10 mA	I _E = 0 mA	65			V
BV _{CES}	I _C = 25 mA	$V_{BE} = 0 V$	65			V
BV_{EBO}	I _E = 5.0 mA	$I_C = 0 \text{ mA}$	3.5			V
I _{CES}	V _{CE} = 50 V	I _E = 0 mA			25	mA
h _{FE}	V _{CE} = 5 V	I _C = 1A	10			mA

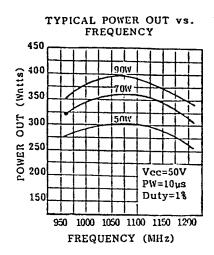
DYNAMIC

Cumbal	Test Conditions		Value			l lm!t
Symbol			Min.	Тур.	Max.	Unit
Pout	f = 1025 - 1150 MHz P _{IN} = 70W	V _{CE} = 50V	300			W
G _P	f = 1025 - 1150 MHz P _{IN} = 70W	V _{CE} = 50V	6.3			dB
ης	f = 1025 - 1150 MHz P _{IN} = 70W	V _{CE} = 50V	35			%
Conditions	Pulse Width = 10 μs Duty Cycle = 1%					

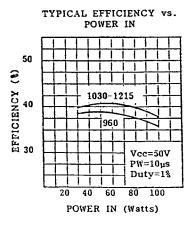
IMPEDANCE DATA

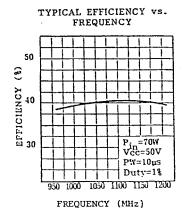
FREQ	$Z_{IN}(\Omega)$	$Z_{CL}(\Omega)$		
960 MHz	5.1 + j1.0	2.2 – j3.5		
1090 MHz	4.2 + j0.5	2.5 – j3.5		
1215 MHz	7.5 + j1.5	2.3 – j1.5		


Pin = 70W Vce = 50V



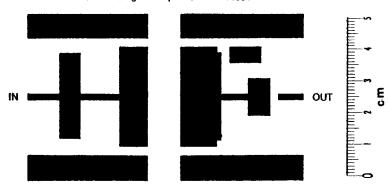
TYPICAL PERFORMANCE

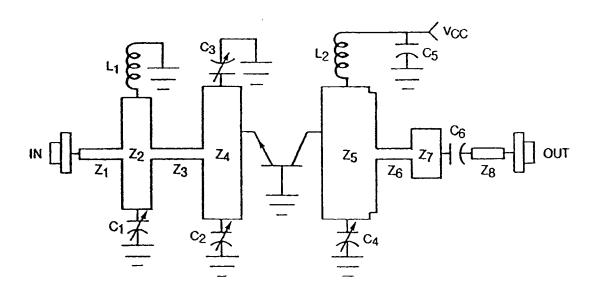

POWER OUTPUT vs POWER INPUT


POWER OUTPUT vs FREQUENCY

EFFICIENCY vs POWER INPUT

EFFICIENCY vs FREQUENCY





TEST CIRCUIT

Teflon Fiberglass $\mathcal{E}_{\Gamma} = 2.5$ THK .031

All Dimension are in Inches

L1 : 2 Turns #24 .12 I.D., Spaced Wire Diameter Z5 : .505 x 1.200 with Two Notches .05 Long By .068 Wide

: 2 Turns #24 .12 I.D., Spaced Wire Diameter By .068 Wide : 4 Turns #24, .07 I.D., Spaced Wire Diameter Z6 : .335 x .076 Z7 : .260 x .442 Z8 : .310 x .082

Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.

PACKAGE MECHANICAL DATA

PACKAGE STYLE M138

	MINIMUM	MAXIMUM		MINIMUM	MAXIMUM
	INCHES/MM	INCHES/MM		INCHES/MM	INCHES/MM
Α	.095/2,41	.105/2,67		.055/1,40	.065/1,65
В	.125,	/3,18	J	.105/2,67	.125/3,18
С	.380/9,65	.390/9,91	K		.230/5,84
D	.790/20,07		L	.392/9,96	.402/10,21
Е	.392/9,96	.402/10,21			
F	.645/16,38	.655/16,64			
G	.895/22,73	.905/22,99			
Н	.002/0,05	.006/0,15			