

FEATURES:

• High Gain:

•

- Typically 28 dB gain across 2.4– 2.5 GHz over temperatures 0– 85°C
- High linear output power:
- >24 dBm P1dB
- High power-added efficiency/low operating current for Bluetooth applications
 - ~50% PAE or 115 mA total current consumption @ Pout = 23 dBm for V_{cc} = 3.3V and GCTL = 3.0V
- Low idle current
 - ~10 mA I_{CQ}
- Simple input/output matching
- Packages available
 - 6-contact VQFN and UQFN (3 x 1.6mm²)

APPLICATIONS:

- Bluetooth
- USB Dongles
- 2.4 GHz Cordless phones

PRODUCT DESCRIPTION

The SST12LP00 is a high-power and high-gain power amplifier based on the highly reliable InGaP/GaAs HBT technology. SST12LP00 is easily configured for high-power and high-efficiency applications while operating over the 2.4- 2.5 GHz frequency band. This device typically provides 30 dB gain with better than 50% power added efficiency @ $P_{out} = 23$ dBm.

The SST12LP00's excellent linearity is well suited for Class 1 Bluetooth operation. The power amplifier IC also features easy board-level usage along with high speed power up/down control. A low reference current makes SST12LP00 ideal for the final stage power amplification in battery-powered Bluetooth, USB Dongle, or cordless phone transmitter applications.

The SST12LP00 is offered in both 6-contact VQFN and UQFN packages. See Figure 2 for pin assignments and Table 1 for pin descriptions.

FUNCTIONAL BLOCKS

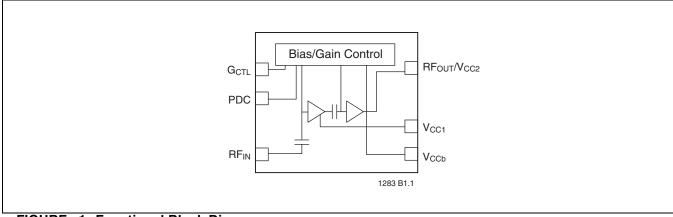


FIGURE 1: Functional Block Diagram

PIN ASSIGNMENTS

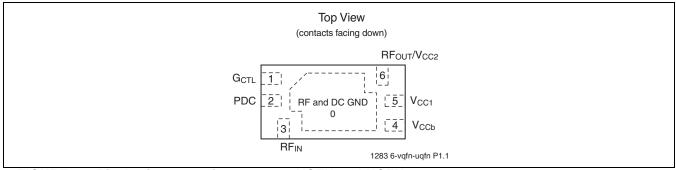


FIGURE 2: Pin Assignments for 6-contact VQFN and UQFN

PIN DESCRIPTIONS

TABLE 1: Pin Description

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		The center pad should be connected to RF ground with several low inductance, low resistance vias.
G _{CTL}	1			Power Amplifier Gain Control
PDC	2			Power-down Control
RF _{IN}	3		I	RF input, DC decoupled
V _{CCb}	4	Power Supply	PWR	Vcc power supply, bias circuit
V _{CC1}	5	Power Supply	PWR	Vcc power supply, 1st stage
RF _{OUT} /V _{CC2}	6		O/PWR	Vcc power supply, 2nd stage

1. I=Input, O=Output

T1.1 1283

ELECTRICAL SPECIFICATIONS

The AC and DC specifications for the power amplifier interface signals. Refer to Table 2 for the DC voltage and current specifications. Refer to Figure 3 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Supply Voltage at pins 4, 5, and 6 (V _{CC})	0.3V to +3.6V
Power-down Control Voltage (PDC)	
Gain Control Voltage (G _{CTL})	
Radio Frequency Input Power (RF _{IN})	+10 dBm
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	260°C for 10 seconds

Operating Range

Range	Ambient Temp	V _{cc}	
Industrial	-40°C to +85°C	3.3V	

TABLE 2: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit	Test Conditions
V _{CC}	Supply Voltage at pins 4, 5, and 6	2.7	3.3	3.6	V	
I _{CC}	Supply Current @ P _{OUT} = 23 dBm		115		mA	
G _{CTL}	Power Amplifier Gain Control Voltage	0.1	3.0	3.3	V	
I _{GCTL}	Current through G _{CTL} pin		55	100	μA	
PDC	Logic High Voltage	2.6			V	
	Logic Low Voltage			0.8	V	
I _{CQ}	Idle Current (G _{CTL} = 3.0V)		10		mA	

T2.3 1283

TABLE 3: AC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2402		2480	MHz
P _{OUT}	Output power				
	@ PIN = -7 dBm, V_{CC} = 3.3V, G_{CTL} = 3.0V		23		dBm
G	Small signal gain		27		dB
G _{VAR}	Gain variation over band (2400~2485 MHz)		0.2	0.5	dB

T3.2 1283

TYPICAL PERFORMANCE CHARACTERISTICS

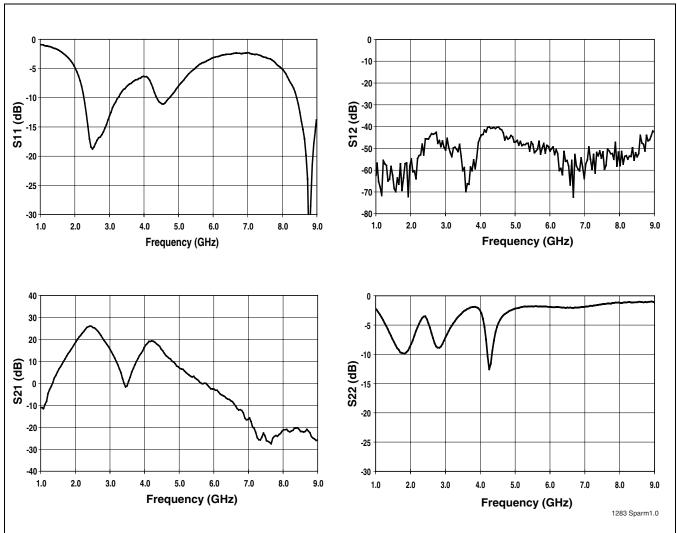


FIGURE 3: S-parameters for SST12LP00

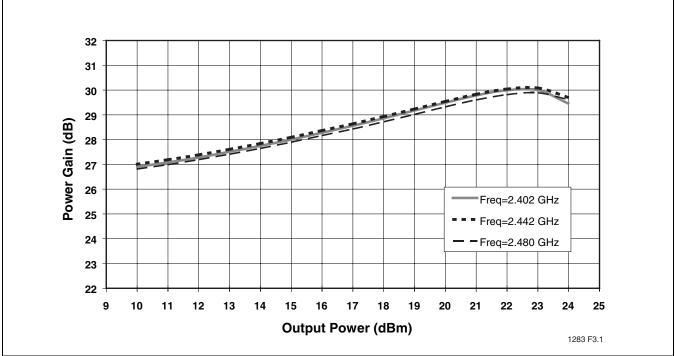
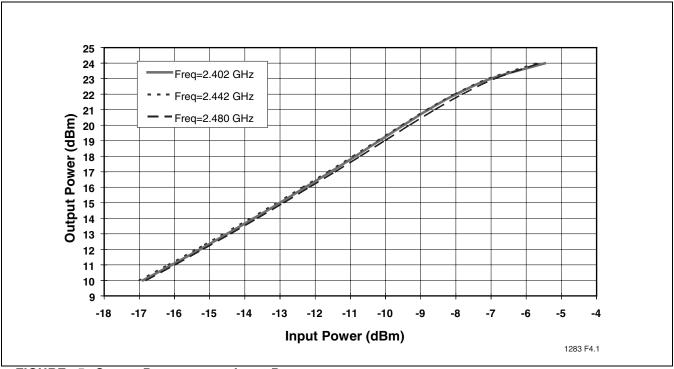
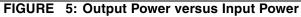




FIGURE 4: Power Gain versus Output Power

EOL Data Sheet

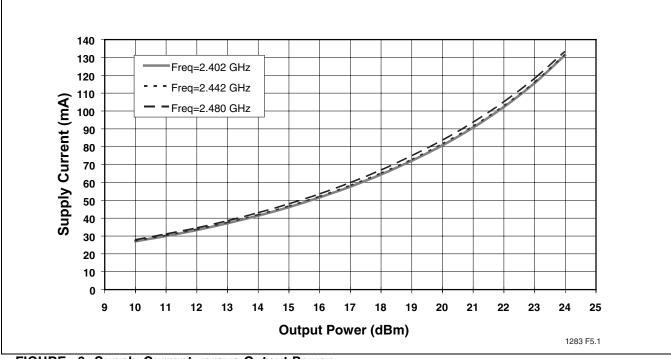


FIGURE 6: Supply Current versus Output Power

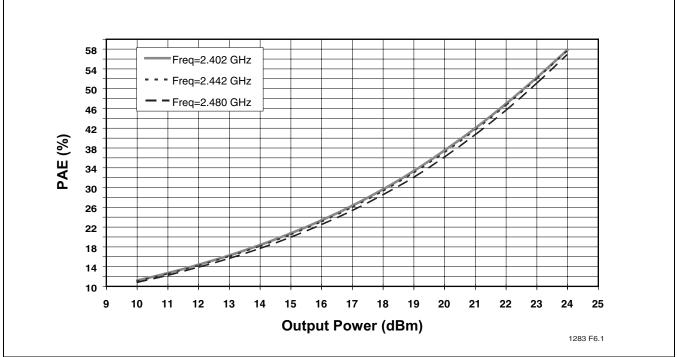


FIGURE 7: PAE versus Output Power

2.4-2.5 GHz Power Amplifier SST12LP00

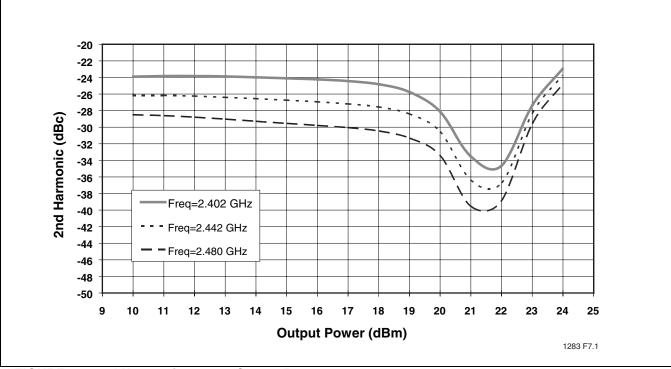


FIGURE 8: 2nd Harmonic versus Output Power

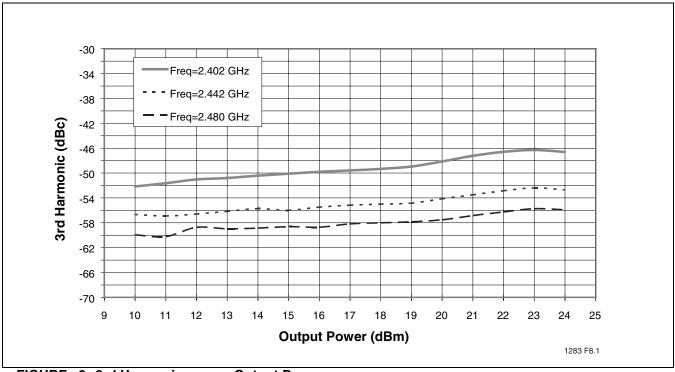


FIGURE 9: 3rd Harmonic versus Output Power

EOL Data Sheet

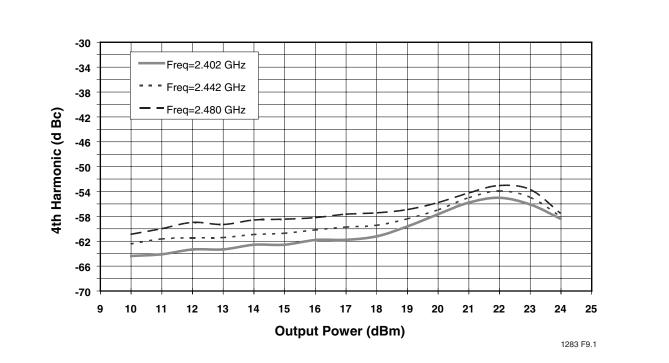
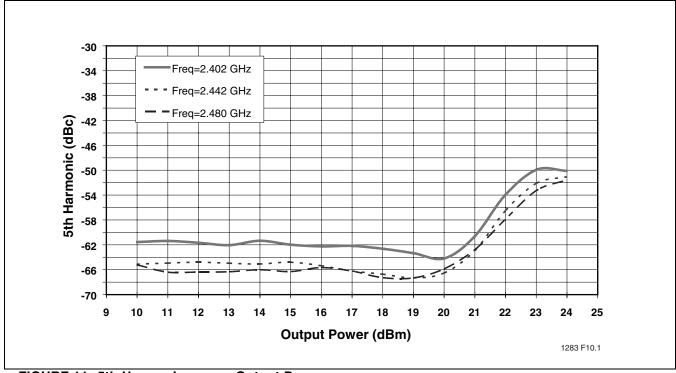



FIGURE 10: 4th Harmonic versus Output Power

2.4-2.5 GHz Power Amplifier SST12LP00

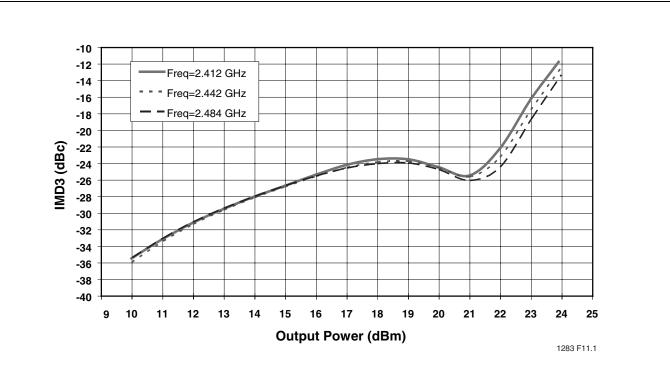
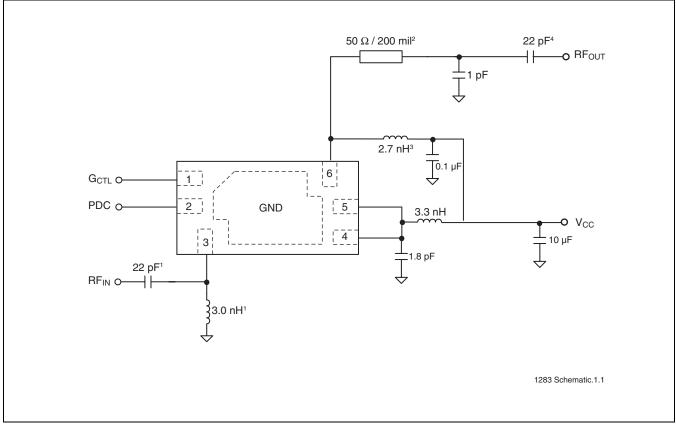
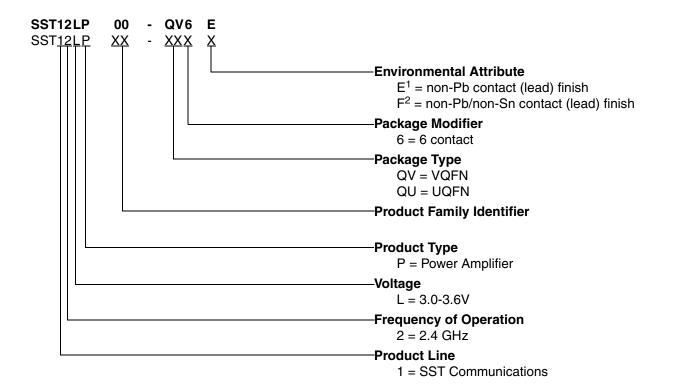



FIGURE 12: IMD3 versus Output Power

TYPICAL APPLICATION

1. Optional and only necessary for achieving high input return loss.

2. Replaceable by 1 nH (0402) inductor for compactness.


3. Shunt capacitor can be added to the inductor to lower the 2nd harmonic.

4. LC low-pass filter can be added to lower the 2nd harmonic.

FIGURE 13: Typical Application Schematic (Top View)

PRODUCT ORDERING INFORMATION

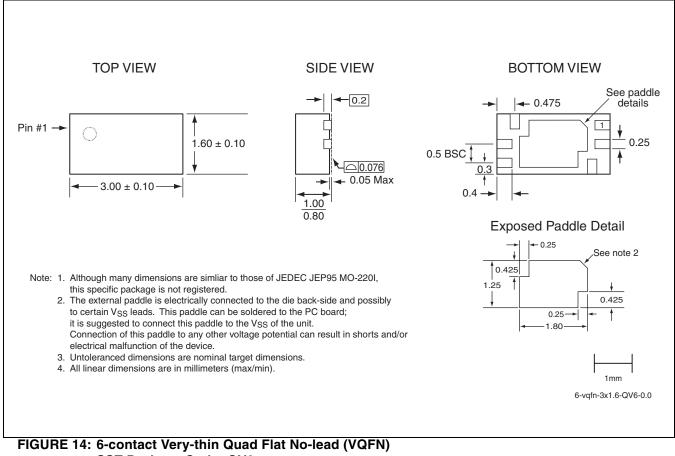
1. Environmental suffix "E" denotes non-Pb solder.

SST non-Pb solder devices are "RoHS Compliant". 2. Environmental suffix "F" denotes non-Pb/non-SN solder.

SST non-Pb/non-Sn solder devices are "RoHS Compliant".

Valid combinations for SST12LP00

SST12LP00-QV6E SST12LP00-QU6F


SST12LP00 Evaluation Kits

SST12LP00-QV6E-K SST12LP00-QU6F-K

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

PACKAGING DIAGRAMS

SST Package Code: QV6

2.4-2.5 GHz Power Amplifier SST12LP00

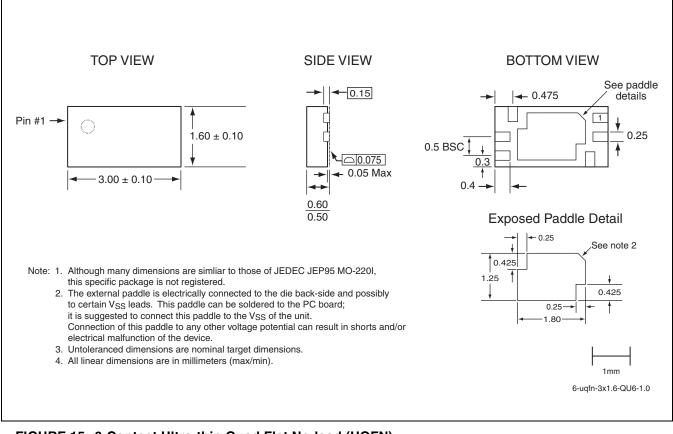


FIGURE 15: 6-Contact Ultra-thin Quad Flat No-lead (UQFN) SST Package Code: QU6

TABLE	4: Revision	History
-------	-------------	---------

Revision	Description	Date
00	S71283: SST conversion of data sheet GP1200	Jan 2005
01	Made various changes to include UQFN package	Mar 2006
	 Updated Information in "Features:" on page 1 	
	Updated "Product Description" on page 1	
	Updated Table 1 on page 2	
	 Updated "Electrical Specifications" on page 3 	
	Updated Table 2 on page 3	
	Updated Table 3 on page 3	
	Updated Figure 13 on page 10	
	Applied new formatting styles.	
02	Updated document status from Preliminary Specification to Data Sheet	Apr 2008
03	Updated "Contact Information" on page 14.	Feb 2009
04	End of Life all valid combinations in this data sheet	Apr 2009

CONTACT INFORMATION

Marketing

SST Communications Corp.

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600 Fax: 310-577-3605

Sales and Marketing Offices

NORTH AMERICA

Silicon Storage Technology, Inc.

1171 Sonora Court Sunnyvale, CA 94086-5308 Tel: 408-735-9110 Fax: 408-735-9036

EUROPE

Silicon Storage Technology Ltd.

Mark House 9-11 Queens Road Hersham, Surrey KT12 5LU UK Tel: 44 (0) 1932-238133 Fax: 44 (0) 1932-230567

JAPAN

SST Japan

NOF Tameike Bldg, 9F 1-1-14 Akasaka, Minato-ku Tokyo, Japan 107-0052 Tel: 81-3-5575-5515 Fax:81-3-5575-5516

ASIA PACIFIC NORTH

SST Macao

Room N, 6th Floor, Macao Finance Center, No. 202A-246, Rua de Pequim, Macau Tel: 853-2870-6022 Fax: 853-2870-6023

2.4-2.5 GHz Power Amplifier

SST12LP00

ASIA PACIFIC SOUTH

SST Communications Co.

16F-6, No. 75, Sec.1, Sintai 5th Rd Sijhih City, Taipei County 22101 Taiwan, R.O.C. Tel: 886-2-8698-1198 Fax: 886-2-8698-1190

KOREA

SST Korea

6F, Heungkuk Life Insurance Bldg 6-7 Sunae-Dong, Bundang-Gu, Sungnam-Si Kyungki-Do, Korea, 463-020 Tel: 82-31-715-9138 Fax: 82-31-715-9137

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com