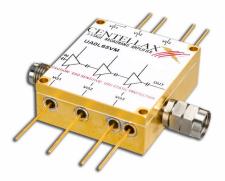


65 GHz Broadband Amplifier Module

Features

- 23 dBm saturated output power
- 30 dB gain (to 50 GHz)
- 2.7 W power dissipation
- Useful gain to 65 GHz
- Small size package
- ECCN 3A001.b.4.e


Description

The UA0L65VM Amplifier is a general-purpose broadband amplifier designed for microwave communications, test equipment, and military systems. Its small size and exceptional performance make it a versatile gain block which can improve power and gain in a single hermetically sealed package potentially replacing 2 or 3 narrower band amplifiers.

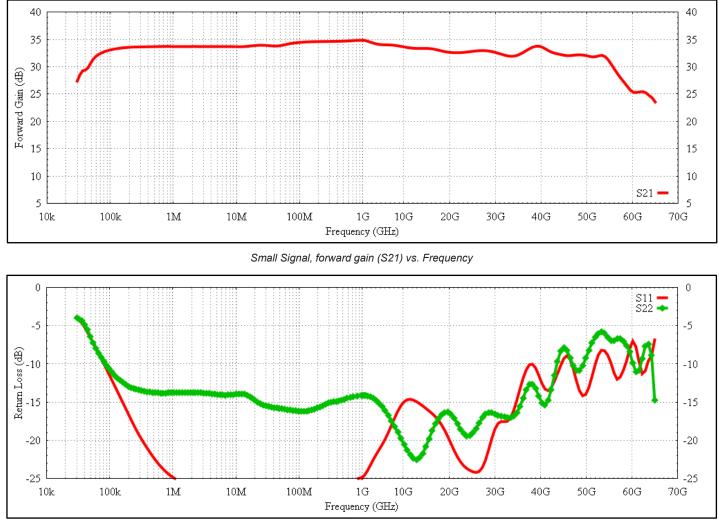
The UA0L65VM provides a complete amplifier module package with a wide frequency range of 100 kHz to 65 GHz, low power dissipation, ample output power, low noise figure and gain control.

Application

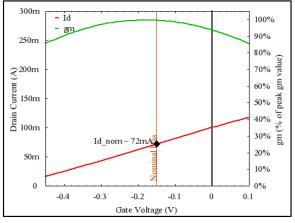
- mm-wave systems
- High frequency test instrumentation
- Broadband gain amplifier

Frequency Domain

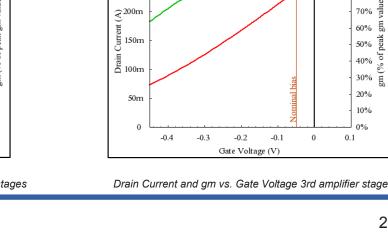
Key Characteristics: (Specifications pertain to case temperature range 0 to +75°C,and standard 2.4mm connectors)


 $Vd1=Vd2=Vd3=7V + -5\%, Vg1=Vg2= -0.15V, Vg3= -0.05V; Zo=50\Omega$

		100kHz - 30GHz			30 - 50GHz		
Parameter	Description	Min	Тур	Мах	Min	Тур	Max
S21 (dB)	Small Signal Gain	27	30	-	24	30	-
S11 (dB)	Input Match	-	-15	-10	-	-12	-4
S22 (dB)	Output Match	-	-15	-10	-	-8	-4


* Vg1/ Vg2/ Vg3 adjusted for peak gm

Typical Performance



Small signal, input (S11) & output return (S22) loss vs. Frequency

Drain Current and gm vs. Gate Voltage 1st and 2nd amplifier stages

SMD-00068 Rev G Subject to Change Without Notice

300m

250m

- Id

– gn

Id_nom ~ 236mA

100%

90%

80%

70%

60%

20%

10%

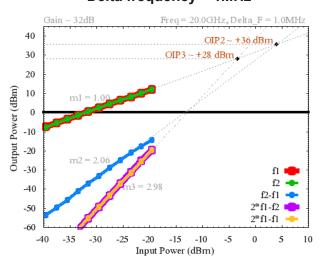
0%

0.1

0

value)

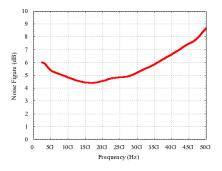
ES


peak 50%

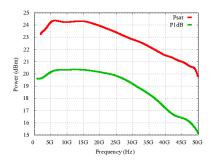
gm (% of 40% 30%

Typical Performance

Two Tone Performance @ 20 GHz Delta frequency = 1MHz


Absolute Maximum Ratings*

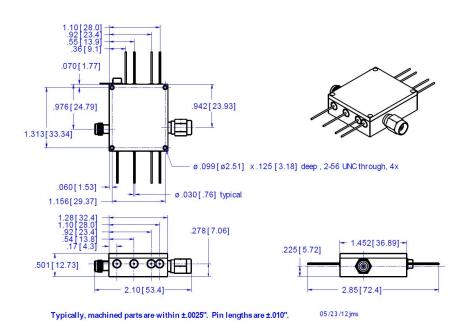
Parameter	Description	Minimum	Maximum
Vd1 (V)	First Drain Voltage	-	9
Vd2 (V)	Second Drain Voltage	-	9
Vd3 (V)	Third Drain Voltage	-	9
ld1 (mA)	First Drain Current	-	250
ld3 (mA)	Second Drain Current	-	250
ld3 (mA)	Third Drain Current	-	400
Vg1 (V)	First Gate Voltage	-1.5	1
Vg2 (V)	Second Gate Voltage	-1.5	1
Vg3 (V)	Third Gate Voltage	-1.5	1
Storage	e Temperature (C)	-55	125
Operating Case Temperature (C)		-25	85
Lead Soldering** (C)		-	260° for 3 sec.
RF Input Power (dBm)		-	20
RF connector torque requirement (in-lb)		-	8


Recommended Operating Bias

Parameter	Typical
Vd1=7V, Vg1= -0.15V	ld1=72mA
Vd2=7V, Vg2= -0.15V	ld2=72mA
Vd3=7V, Vg3= -0.05	ld3=236mA
Power Dissipation	2.7W

Noise Figure vs. Frequency

P1db and Psat vs. Frequency



*Operation beyond the values listed under the Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended Operating Bias is not implied. Prolonged use at the absolute maximum rating conditions may affect device reliability. **The use of a heat sink between the component body and the solder joint is highly recommended.

SMD-00068 Rev G Subject to Change Without Notice

Physical Dimensions and Pin Assignment

Physical Characteristics

(all measurements in inches[mm])

Tolerance typically +/- 0.0025in (+/- 0.0635mm)

DC pin diameter is 0.03in [0.76mm]

Table 1: UA0L65VM Pin Definition

Pin	Function	Operational Notes
RFin	RF Input	2.4mm Connector (f) standard, other options available
RFout	RF Output	2.4mm Connector (m) standard, other options available
1 (Vg1)	1st stage gate bias	Adjust for optimum gain
2 (Vg2)	2nd stage gate bias	Adjust for optimum gain
3 (Vg3)	3rd stage gate bias	Adjust for optimum gain
4	NC	Not Connected
5 (Vd1)	1st stage drain bias	Set at typical operating specification
6 (Vd2)	2nd stage drain bias	Set at typical operating specification
7 (Vd3)	3rd stage drain bias	Set at typical operating specification
8	NC	Not Connected

Bias Recommendations (in order):

Downloaded from Arrow.com.

1) Set gate bias to recommended values; 2) Apply Bias Drains; 3) Adjust bias for optimum gain (maximum gm)

Versatile Bias Board (TE1B) Available. Please visit our website for more information

Information contained in this document is proprietary to Microsemi. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996	Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com .
---	--

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.