

FEATURES:

- High Gain:
 - Typically 29 dB gain across 2.4-2.5 GHz
 - Typically 29-26 dB gain across 4.9-5.8 GHz

High linear output power:

- >25 dBm P1dB (Pulsed single-tone signal) across 2.4-2.5 GHz
- Meets 802.11b OFDM ACPR requirement up to 23.5 dBm across 2.4-2.5 GHz
- Meets 802.11g OFDM ACPR requirement up to 23 dBm across 2.4-2.5 GHz
- Added EVM ~4% up to 19 dBm for 54 Mbps 802.11g signal across 2.4-2.5 GHz
- >24 dBm P1dB across 4.9-5.8 GHz
- Meets 802.11a OFDM ACPR requirement up to 22.5 dBm across 4.9-5.8 GHz
- Added EVM ~4% up to 18 dBm for 54 Mbps 802.11a signal across 4.9-5.8 GHz
- High power-added efficiency/Low operating current for 802.11a/b/g applications
 - ~160 mA @ P_{OUT} = 19 dBm for 802.11g
 - ~235 mA @ P_{OUT} = 23.5 dBm for 802.11b
 - ~270 mA @ P_{OUT} = 18 dBm for 802.11a
- Built-in Ultra-low I_{REF} power-up/down control - I_{REF} < 2 mA
- High-speed power-up/down
 - Turn on/off time (10%-90%) <100 ns
 - Typical power-up/down delay with driver delay included <200 ns

- High temperature stability
 - ~1 dB gain/power variation between 0°C to +85°C across 2.4-2.5 GHz
 - ~3/1 dB gain/max linear power variation between 0°C to +85°C across 4.9-5.8 GHz
 - ± 0.5 dB detector variation between 0°C to +85°C
- Low shut-down current (< 2 μA)
- 20 dB dynamic range on-chip power detection
- Built-in input/output matching
- Packages available
 - 16-contact LGA package (4mm x 4mm)
- All non-Pb (lead-free) devices are ROHS compliant.

APPLICATIONS:

- WLAN (IEEE 802.11a/g/b)
- Japanese WLAN
- HyperLAN2
- Multimedia
- Home RF
- Cordless phones

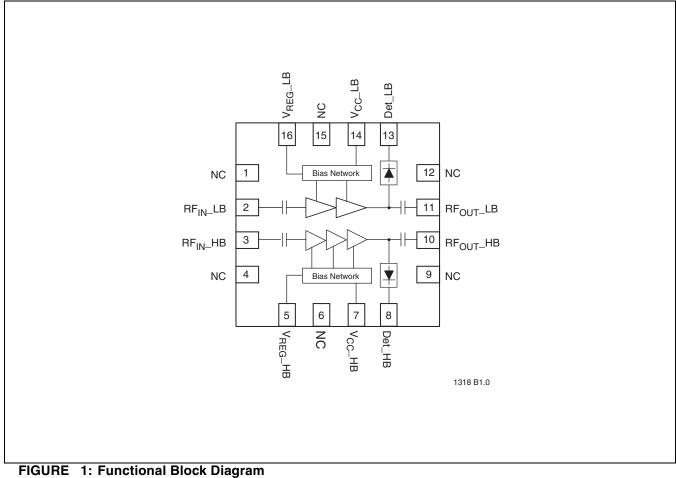
PRODUCT DESCRIPTION

The SST13LP05 is a fully matched, dual-band power amplifier module (PAM) based on the highly-reliable InGaP/GaAs HBT technology. This PAM provides excellent RF performance, temperature-stable power detectors, and low-current analog on/off control interfaces. The SST13LP05 provides stable RF and power detector performance over a large V_{CC} power supply variation, with an ultra-low shut-down current.

With a near-zero Rest of Bill of Materials (RBOM), the SST13LP05 is designed for 802.11a/b/g applications covering frequency bands 2.4-2.5 GHz and 4.9-5.8 GHz for U.S., European, and Japanese markets.

The SST13LP05 has excellent linearity, typically 4% added Error Vector Magnitude (EVM) at 19 dBm output power. This output power is essential for 54 Mbps 802.11g operation while meeting 802.11g spectrum mask at 23 dBm and 802.11b spectrum mask at 23.5 dBm. For 802.11a operation, the SST13LP05 typically demonstrates <4% added EVM at 18 dBm output power while meeting 802.11a spectrum mask at 22.5 dBm.

The SST13LP05 also has wide-range (>20 dB), temperature-stable (± 0.5 dB across 0°C to +85°C), directionallycoupled, power detectors which provide a reliable and costeffective solution to board-level power control. The device's analog on/off control can be driven by an analog or digital control signal from either a transceiver or baseband chip.


These features, coupled with low operating current, make the SST13LP05 ideal for the final stage power amplification in both battery-powered 802.11a/b/g WLAN transmitters and access point applications.

The SST13LP05 is offered in a 16-contact LGA package. See Figure 2 for pin assignments and Table 1 for pin descriptions.

Downloaded from Arrow.com.

FUNCTIONAL BLOCKS

PIN ASSIGNMENTS

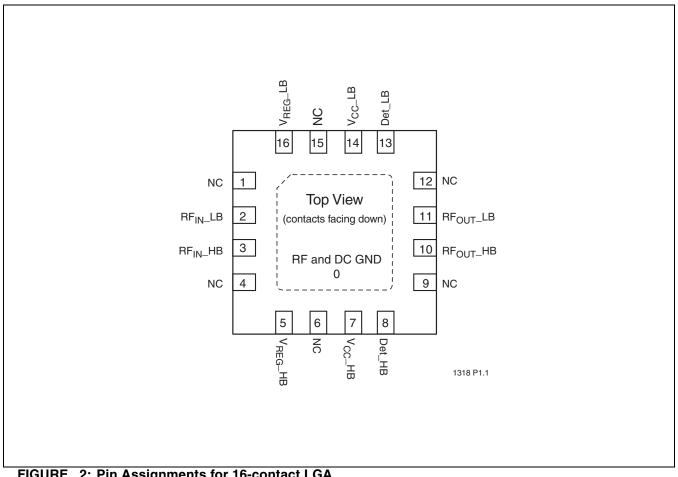


FIGURE 2: Pin Assignments for 16-contact LGA

PIN DESCRIPTIONS

TABLE 1: Pin Description

Symbol	Pin No.	Pin Name	Туре	Function
GND	0	Ground		Ground Pad
NC	1	No Connection		Unconnected Pin
RF _{IN} _LB	2		I	50Ω Matched RF Input for Low Band, AC coupled
RF _{IN} _HB	3		I	50 Ω Matched RF Input for High Band, AC coupled
NC	4	No Connection		Unconnected Pin
V _{REG} _HB	5	Power Supply	PWR	Analog current control for High Band
NC	6	No Connection		Unconnected Pin
V _{CC} _HB	7	Power Supply	PWR	V _{CC} Power Supply for High Band
D _{ET} _HB	8		0	Detector Voltage Output for High Band
NC	9	No Connection		Unconnected Pin
RF _{OUT} _HB	10	Power Supply	O/PWR	50 Ω Matched RF output for High Band
RF _{OUT} _LB	11	Power Supply	O/PWR	50 Ω Matched RF output for Low Band
NC	12	No Connection		Unconnected Pin
D _{ET} _LB	13		0	Detector Voltage Output for Low Band
V _{CC} _LB	14	Power Supply	PWR	V _{CC} Power Supply for Low Band
NC	15	No Connection		Unconnected Pin
V _{REG} _LB	16	Power Supply	PWR	Analog current control for Low Band

T1.0 1318

ELECTRICAL SPECIFICATIONS

The AC and DC specifications for the power amplifier interface signals. Refer to Tables 2 and 4 for the DC voltage and current specifications. Refer to Figures 3 through 22 for the RF performance.

Absolute Maximum Stress Ratings Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.

Supply Voltage (V _{CC})	0.3V to +3.6V
Reference Voltage (V _{REF})	0.3V to +3.3V
DC supply current (I _{CC})	400 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	+150°C

For 802.11b/g Operation

TABLE 2: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.3	3.6	V
I _{CC}	Supply Current				
	for 802.11g, 19 dBm		160		mA
	for 802.11b, 23.5 dBm		235		mA
I _{REG}	Analog control current at On state			2	mA
V _{REG}	Reference Voltage		2.95		V

T2.0 1318

TABLE 3: AC Electrical Characteristics for Configuration

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2.4		2.5	GHz
G	Small signal gain	28	29		dB
G _{VAR1}	Gain variation over temperature 0°C – 85°C	-1		1	dB
G _{VAR2}	Gain flatness over any 50 MHz bandwidth	-0.3		0.3	dB
ACPR	Meet 11b spectrum mask	22	23		dBm
	Meet 11g OFDM 54 Mbps spectrum mask	22	23		dBm
Added EVM	P _{OUT} = 19 dBm with 54Mbps			-28	dB
	11g OFDM signal when operating at 3.3V Vcc			4	%
2f, 3f, 4f, 5f	Harmonics at P _{OUT} = 20 dBm			-50	dBc
	Spurious non-harmonics at P _{OUT} = 20 dBm			-60	dBc
	In/Out return loss at 50 Ω nominal impedance	6			dB

T3.0 1318

For 802.11a Operation

TABLE 4: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit
V _{CC}	Supply Voltage	3	3.3	3.6	V
I _{CC}	Supply Current				
	for 802.11a, 18 dBm		270		mA
I _{REG}	Analog control current at On state			2	μA
V _{REG}	Reference Voltage		2.95		V

T4.1 1318

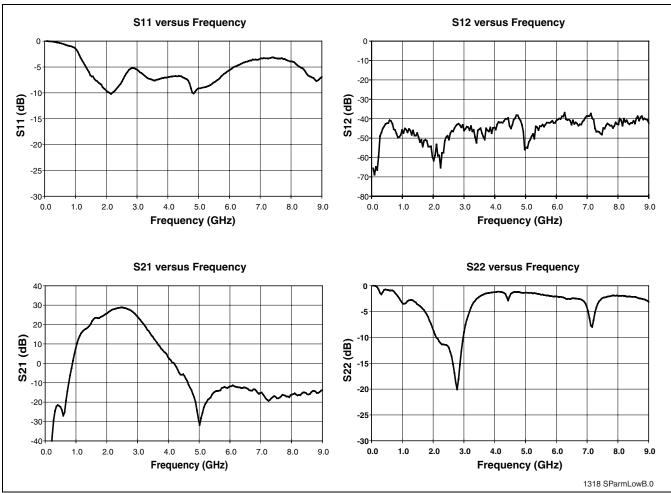
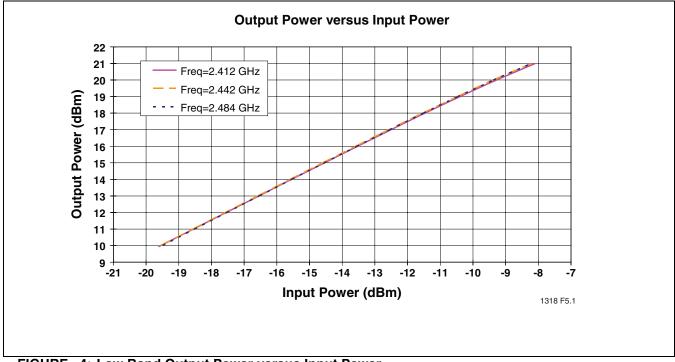
TABLE 5: AC Electrical Characteristics for Configuration

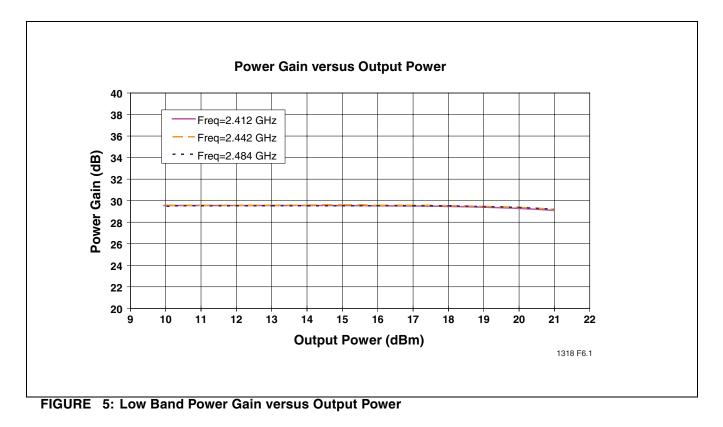
Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	4.92		5.805	GHz
G	Small signal gain across 4.9- 5.8 GHz	26			dB
G _{VAR1}	Gain variation over temperature 0°C – 85°C	-1		1	dB
G _{VAR2}	Gain flatness over any 100 MHz bandwidth	-0.5		0.5	dB
ACPR	Meet 11a OFDM 54 Mbps spectrum mask	22	22.5		dBm
Added EVM	P _{OUT} = 18 dBm with 54Mbps			-28	dB
	11aOFDM signal when operating at 3.3V Vcc			4	%
2f, 3f, 4f, 5f	Harmonics at 20 dBm			-45	dBc

T5.1 1318

Typical Low Band Performance for 802.11b/g

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, V_{REF} = 2.95V unless otherwise noted


FIGURE 3: Low Band S-Parameters

Test Conditions: V_{CC} = 3.3 V, V_{REF} = 2.95 V, 54 Mbps 802.11g OFDM signal

FIGURE 4: Low Band Output Power versus Input Power

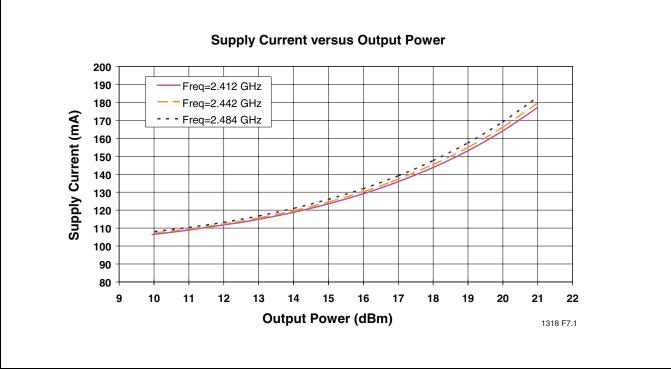
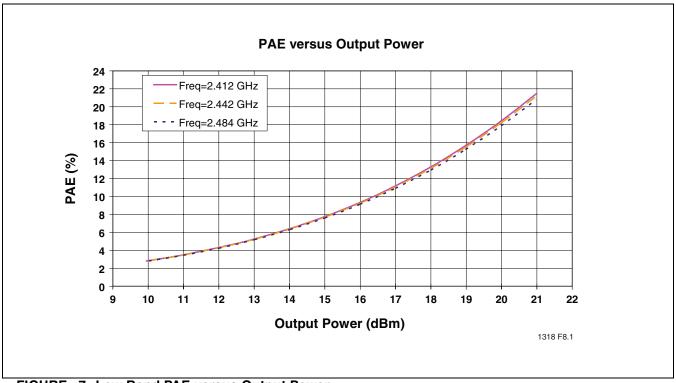
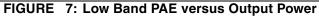




FIGURE 6: Low Band Supply Current versus Output Power

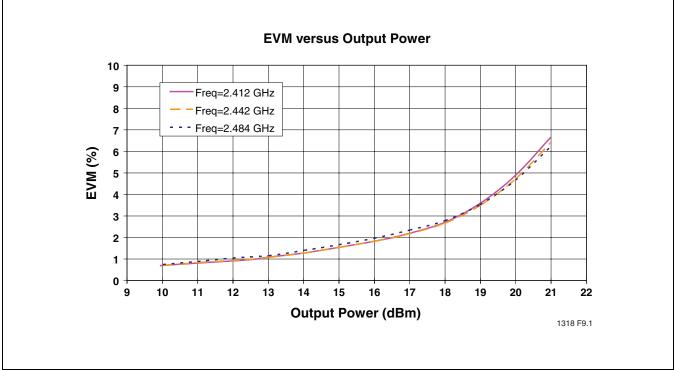
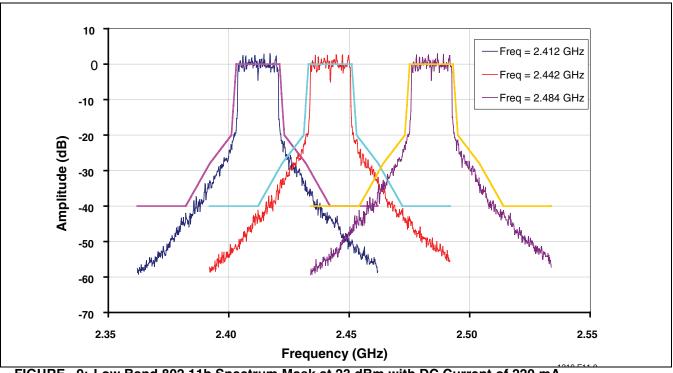
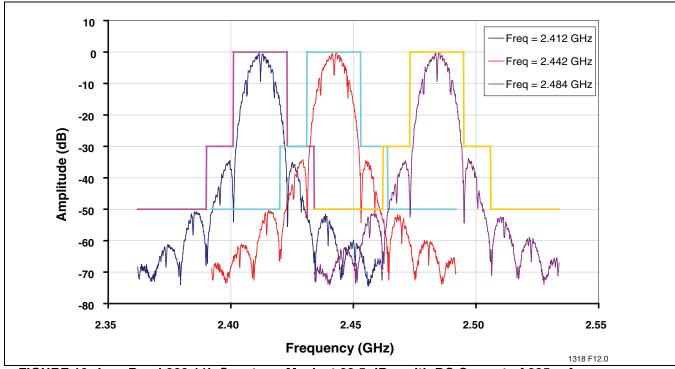




FIGURE 8: Low Band EMV versus Output Power

Test Conditions: V_{CC} = 3.3V, V_{REF} = 2.95V, T_A = 25°C, 1 Mbps 802.11b CCK Signal

FIGURE 10: Low Band 802.11b Spectrum Mask at 23.5 dBm with DC Current of 235 mA

Low Band Power Detector Characteristics

Test Conditions: V_{CC} = 3.3V, V_{REF} = 2.95V, T_A = 25°C, 54 Mbps 802.11g OFDM Signal

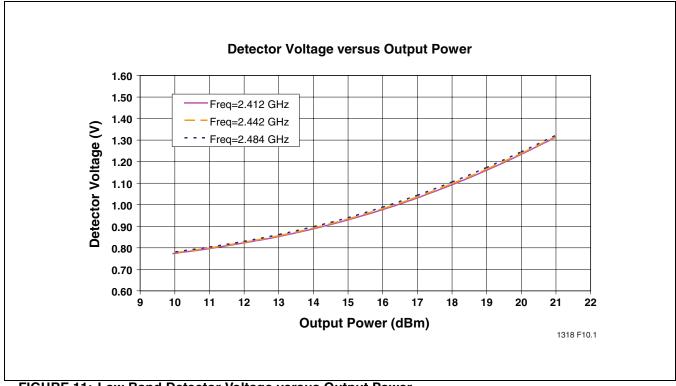


FIGURE 11: Low Band Detector Voltage versus Output Power

Typical High Band Performance for 802.11a

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, V_{REF} = 2.95V unless otherwise noted

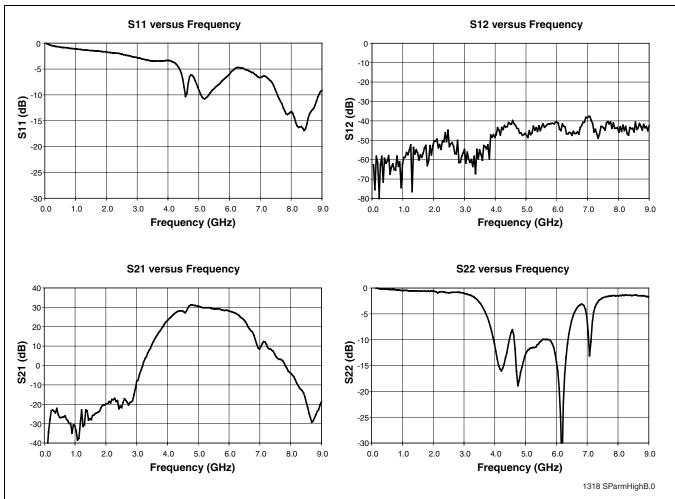
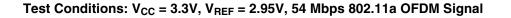



FIGURE 12: High Band S-Parameters

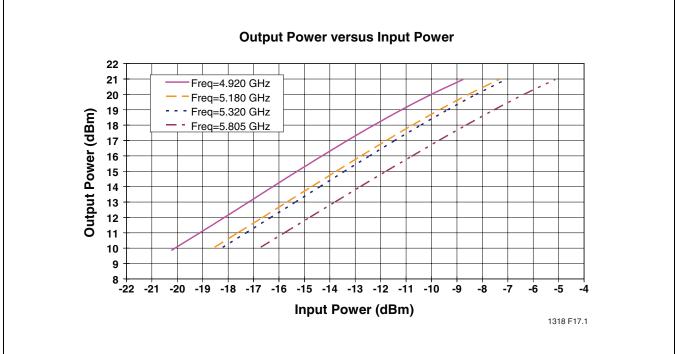
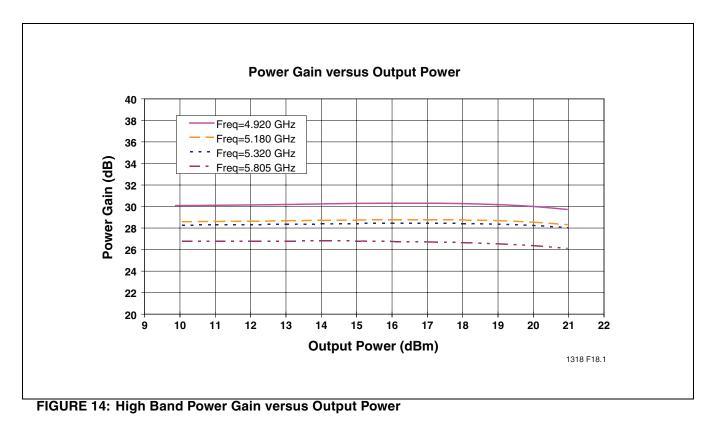



FIGURE 13: High Band Output Power versus Input Power

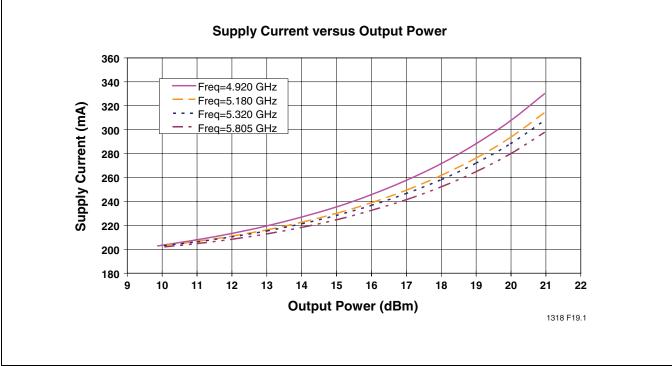
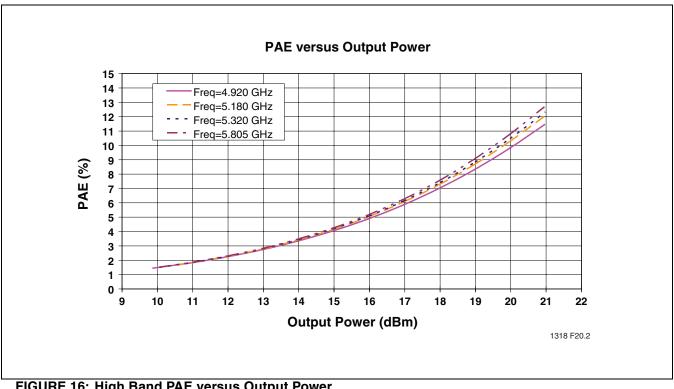



FIGURE 15: High Band Supply Current versus Output Power

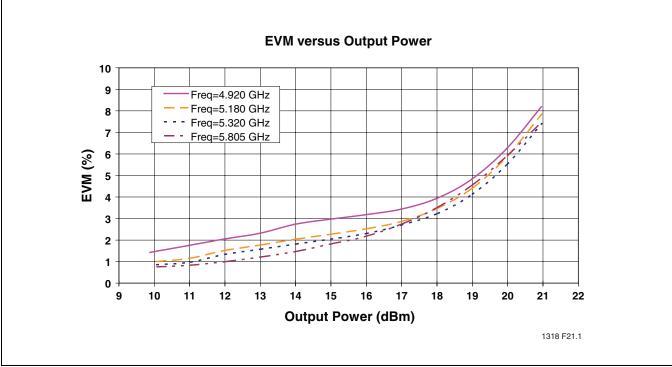
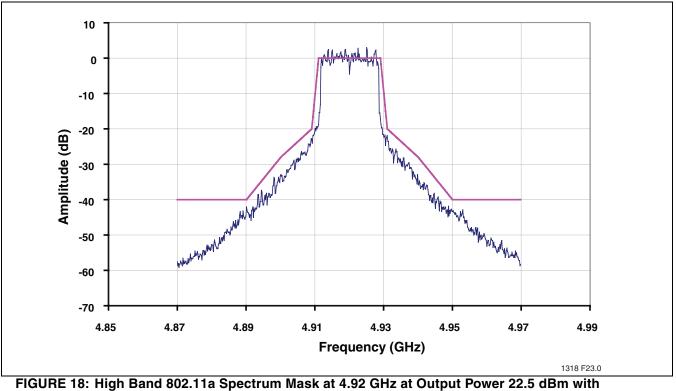



FIGURE 17: High Band EVM versus Output Power

DC Current at 370 mA

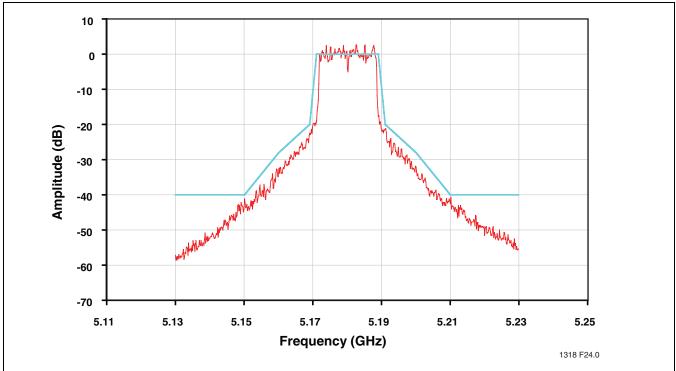


FIGURE 19: High Band 802.11a Spectrum Mask at 5.18 GHz at Output Power 22.5 dBm with DC Current at 355 mA

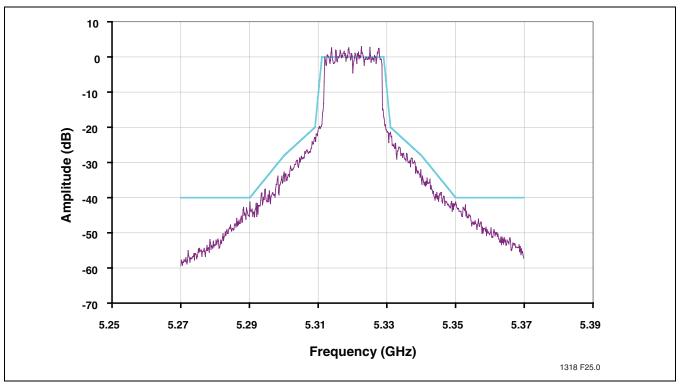


FIGURE 20: High Band 802.11a Spectrum Mask at 5.32 GHz at Output Power 23 dBm with DC Current at 360 mA

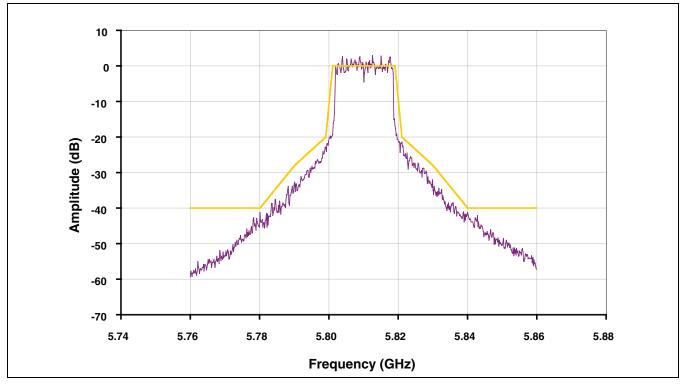


FIGURE 21: High Band 802.11a Spectrum Mask at 5.805 GHz at Output Power 23 dBm with DC Current at 350 mA

High Band Power Detector characteristics

Test Conditions: V_{CC} = 3.3V, V_{REF} = 2.95V, T_A = 25°C, 54 Mbps 802.11a OFDM Signal

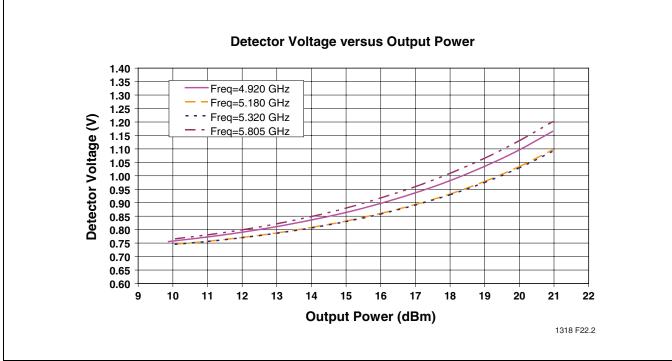


FIGURE 22: High Band Detector Voltage versus Output Power

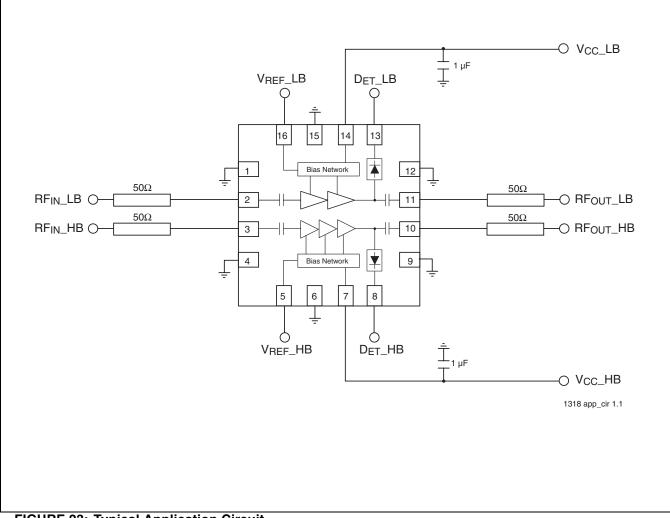
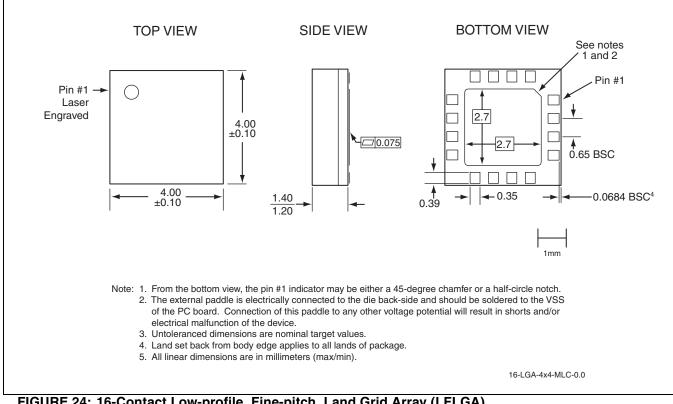


FIGURE 23: Typical Application Circuit

PRODUCT ORDERING INFORMATION

1. Environmental suffix "F" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".


Valid combinations for SST13LP05 SST13LP05-MLCF

SST13LP05 Evaluation Kits

SST13LP05-MLCF-K

Note: Consult your SST sales representative to confirm availability of valid combinations.

FIGURE 24: 16-Contact Low-profile, Fine-pitch, Land Grid Array (LFLGA) SST Package Code: MLC

TABLE 6: Revision History

Revision	Description		
00	Initial release of data sheet.	Dec 2006	
01	Updated document status from Preliminary Specification to Data Sheet	Apr 2008	
02	Updated "Contact Information" on page 24.	Feb 2009	

CONTACT INFORMATION

Marketing

SST Communications Corp.

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600 Fax: 310-577-3605

Sales and Marketing Offices

NORTH AMERICA

Silicon Storage Technology, Inc.

1171 Sonora Court Sunnyvale, CA 94086-5308 Tel: 408-735-9110 Fax: 408-735-9036

EUROPE

Silicon Storage Technology Ltd.

Mark House 9-11 Queens Road Hersham, Surrey KT12 5LU UK Tel: 44 (0) 1932-238133 Fax: 44 (0) 1932-230567

JAPAN

SST Japan

NOF Tameike Bldg, 9F 1-1-14 Akasaka, Minato-ku Tokyo, Japan 107-0052 Tel: 81-3-5575-5515 Fax:81-3-5575-5516

ASIA PACIFIC NORTH

SST Macao

Room N, 6th Floor, Macao Finance Center, No. 202A-246, Rua de Pequim, Macau Tel: 853-2870-6022 Fax: 853-2870-6023

ASIA PACIFIC SOUTH

SST Communications Co.

16F-6, No. 75, Sec.1, Sintai 5th Rd Sijhih City, Taipei County 22101 Taiwan, R.O.C. Tel: 886-2-8698-1198 Fax: 886-2-8698-1190

KOREA

SST Korea

6F, Heungkuk Life Insurance Bldg 6-7 Sunae-Dong, Bundang-Gu, Sungnam-Si Kyungki-Do, Korea, 463-020 Tel: 82-31-715-9138 Fax: 82-31-715-9137

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com