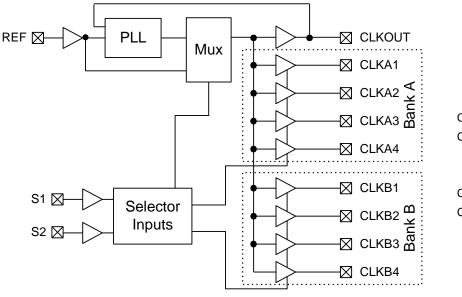
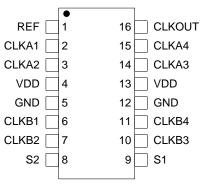


FEATURES

- Frequency Range 10MHz to 220MHz
- Zero input output delay.
- Low Output to Output Skew
- Optional Drive Strength: Standard (8mA) PL123E-09 High (12mA) PL123E-09H
- 2.5V or 3.3V, ±10% operation.
- Available in 16-Pin SOP or TSSOP packages


DESCRIPTION


The PL123E-09 (-09H for High Drive) is a high performance, low skew, low jitter zero delay buffer designed to distribute high speed clocks. It has two low-skew output banks, of 4 outputs each, that are synchronized with the input. Control of the two banks of outputs is achieved by using the S1 and S2 inputs as shown in the Selector Definition table on page 2.

The synchronization is established via CLKOUT feed back to the input of the PLL. Since the skew between the input and output is less than $\pm 100 ps$, the device acts as a zero delay buffer. The input output propagation delay can be advanced or delayed by adjusting the load on the CLKOUT pin.

These parts are not intended for 5V input-tolerant applications.

BLOCK DIAGRAM

PIN DESCRIPTIONS

Name a	Packag	Package Type		December 41 and		
Name	TSSOP-16L	SOP-16L	Type	Description		
REF ^[1]	1	1	I	Input reference frequency.		
CLKA1 ^[2]	2	2	0	Buffered clock output, Bank A		
CLKA2 ^[2]	3	3	0	Buffered clock output, Bank A		
VDD	4,13	4,13	Р	VDD connection		
GND	5,12	5,12	Р	GND connection		
CLKB1 ^[2]	6	6	0	Buffered clock output, Bank B		
CLKB2 ^[2]	7	7	0	Buffered clock output, Bank B		
S2 ^[3]	8	8	I	Selector input		
S1 ^[3]	9	9	I	Selector input		
CLKB3 ^[2]	10	10	0	Buffered clock output, Bank B		
CLKB4 ^[2]	11	11	0	Buffered clock output, Bank B		
CLKA3 ^[2]	14	14	0	Buffered clock output, Bank A		
CLKA4 ^[2]	15	15	0	Buffered clock output, Bank A		
CLKOUT ^[2]	16	16	0	Buffered clock output. Internal feedback on this pin.		

Notes: 1: Weak pull-down. 2: Weak pull-down on all outputs. 3: Weak Pull-Up on S1 and S2

SELECTOR DEFINITION

S2	S 1	CLOCK A1-A4 (Bank A)	CLOCK B1-B4 (Bank B)	CLKOUT	Output Source	PLL Shutdown
0	0	Three-state	Three-state	Driven	PLL	N
0	1	Driven	Three-state	Driven	PLL	N
1	0	Driven	Driven	Driven	Reference	Υ
1	1	Driven	Driven	Driven	PLL	N

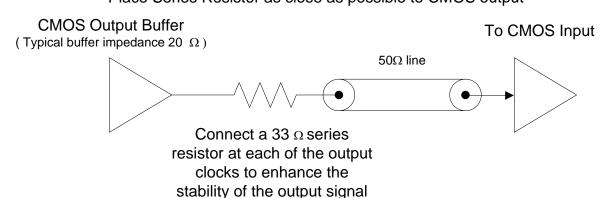
INPUT / OUTPUT SKEW CONTROL

The PL123E-09 will achieve Zero Delay from input to output when all the outputs are loaded equally. Adjustments to the input/output delay can be made by adding additional loading to the CLKOUT pin. Please contact Micrel for more information.

LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

Signal Integrity and Termination Considerations


- Keep traces short!
- Trace = Inductor. With a capacitive load this equals ringing!
- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing).
- Design long traces as "striplines" or "microstrips" with defined impedance.
- Match trace at one side to avoid reflections bouncing back and forth.

Decoupling and Power Supply Considerations

- Place decoupling capacitors as close as possible to the VDD pin(s) to limit noise from the power supply
- Addition of a ferrite bead in series with VDD can help prevent noise from other board sources
- Value of decoupling capacitor is frequency dependant. Typical values to use are $0.1\,\mu\text{F}$ for designs using frequencies < 50MHz and $0.01\,\mu\text{F}$ for designs using frequencies > 50MHz.

Typical CMOS termination

Place Series Resistor as close as possible to CMOS output

ABSOLUTE MAXIMUM CONDITIONS

Supply Voltage to Ground Potential -0.5V to 4.6V DC Input Voltage $V_{SS} - 0.5V$ to 4.6V Storage Temperature -65° C to 150° C

OPERATING CONDITIONS

Description	Parameter	Min	Max	Unit
Supply Voltage	V_{DD}	2.25	3.63	V
Load Capacitance, <100 MHz, 3.3V	$C_{L^{[4]}}$	-	30	pF
Load Capacitance, <100 MHz, 2.5V with High Drive		_	30	pF
Load Capacitance, <133.3 MHz, 3.3V		_	22	pF
Load Capacitance, <133.3 MHz, 2.5V with High Drive		_	22	pF
Load Capacitance, <133.3 MHz, 2.5V with Standard Drive		_	15	pF
Load Capacitance, >133.3 MHz, 3.3V		_	15	pF
Load Capacitance, >133.3 MHz, 2.5V with High Drive		-	15	pF
Input Capacitance ^[5]	C _{IN}	_	5	pF
Closed-loop bandwidth (typical), 3.3V	BW	1		MHz
Closed-loop bandwidth (typical), 2.5V		0.5		MHz
Output Impedance (typical), 3.3V High Drive	R _{out}	23		Ω
Output Impedance (typical), 3.3V Standard Drive		33		Ω
Output Impedance (typical), 2.5V High Drive		26		Ω
Output Impedance (typical), 2.5V Standard Drive		3	19	Ω
Power-up time for all V_{DD} 's to reach minimum specified voltage (power ramps must be monotonic)	t _{PU}	0.01	250	ms

Notes:

- 4. Applies to Test Circuit #1.
- 5. Applies to both REF Clock and internal feedback path on CLKOUT.
- 6. Theta Ja, EIA JEDEC 51 test board conditions, 2S2P; Theta Jc Mil-Spec 883E Method 1012.1.

3.3V DC ELECTRICAL SPECIFICATIONS

Description	Parameter	Test Conditions	Min	Max	Unit
Supply Voltage	V_{DD}		2.97	3.63	V
Input LOW Voltage	V _{IL}		_	0.8	V
Input HIGH Voltage	V _{IH}		2.5	V _{DD} + 0.3	V
Input Leakage Current	I _{IL}	0 < V _{IN} < V _{IL}	-	±10	μΑ
Input HIGH Current	I _{IH}	$V_{IN} = V_{DD}$	_	100	μΑ
Output LOW Voltage	V _{OL}	I _{OL} = 8 mA (Standard Drive) I _{OL} = 12 mA (High Drive)	_ _	0.4 0.4	V V
Output HIGH Voltage	V _{OH}	I _{OH} = -8 mA (Standard Drive) I _{OH} = -12 mA (High Drive)	2.4 2.4	-	V V
Supply Current	I _{DD}	Unloaded outputs, 66-MHz REF	-	45	mA

2.5V DC ELECTRICAL SPECIFICATIONS

Description	Parameter Test Conditions		Min	Max	Unit
Supply Voltage	V_{DD}		2.25	2.75	V
Input LOW Voltage	V_{IL}		-	0.7	V
Input HIGH Voltage	V _{IH}		1.7	V _{DD} + 0.3	V
Input Leakage Current	I _{IL}	0 <v<sub>IN < V_{IL}</v<sub>	-	±10	μΑ
Input HIGH Current	I _{IH}	$V_{IN} = V_{DD}$	-	100	μΑ
Output LOW Voltage	V _{OL}	I _{OL} = 8 mA (Standard Drive) I _{OL} = 12 mA (High Drive)	- -	0.5 0.5	V
Output HIGH Voltage	V _{OH}	$I_{OH} = -8$ mA (Standard Drive) $I_{OH} = -12$ mA (High Drive)	$V_{DD} - 0.6$ $V_{DD} - 0.6$	-	V
Supply Current	I _{DD}	Unloaded outputs, 66-MHz REF	-	30	mA

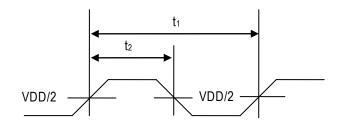
3.3V AND 2.5V AC ELECTRICAL SPECIFICATIONS

Description	Parameter	Test Conditions	Min	Тур	Max	Unit
		3.3V High Drive	10	-	220	MHz
Maximum Frequency[7]	1/t ₁	3.3V Standard Drive	10	-	167	MHz
(Input/Output)	1711	2.5V High Drive	10	-	200	MHz
		2.5V Standard Drive	10	-	134	MHz
Input Duty Cycle	т	<133.3 MHz	25	-	75	%
(PLL Mode only)	T _{IDC}	>133.3 MHz	40	_	60	%
Output Duty Cyclo[8]	4 - 4	<133.3 MHz	47	_	53	%
Output Duty Cycle ^[8]	t ₂ ÷ t ₁	>133.3 MHz	45	_	55	%
		Standard Drive, CL = 30 pF, <100 MHz	-	1.6	_	ns
		Standard Drive, CL = 22 pF, <133.3 MHz	-	1.6	_	ns
Diag Fall Time (2.2)/\\[\(\)[8]		Standard Drive, CL = 15 pF, <167 MHz	-	0.6	_	ns
Rise, Fall Time (3.3V)[8]	t ₃ ,t ₄	High Drive, CL = 30 pF, <100 MHz	-	1.2	_	ns
		High Drive, CL = 22 pF, <133.3 MHz	-	1.2	_	ns
		High Drive, CL = 15 pF, >133.3 MHz	-	0.5	_	ns
		Standard Drive, CL = 15 pF, <133.33 MHz	-	1.5	_	ns
Diag Fall Time (2 5)()[8]		High Drive, CL = 30 pF, <100 MHz	-	2.1	_	ns
Rise, Fall Time (2.5V)[8]	t_3, t_4	High Drive, CL = 22 pF, <133.3 MHz	-	1.3	_	ns
		High Drive, CL = 15 pF, >133.3 MHz	-	1.2	-	ns
Output to Output Skew [8]	t ₅	All outputs equally loaded	-	_	100	ps
Delay, REF Rising Edge	4	PLL enabled @ 3.3V	-100	_	100	ps
to CLKOUT Rising Edge[8]	t ₆	PLL enabled @2.5V	-200	_	200	ps
Dort to Dort Chaudist		Measured at V _{DD} /2. Any output to any output, 3.3V supply	_	_	±150	ps
Part to Part Skew ^[8]	t ₇	Measured at V _{DD} /2. Any output to any output, 2.5V supply	-	_	±300	ps
PLL Lock Time ^[8]	t _{LOCK}	Stable power supply, valid clocks presented on REF and CLKOUT pins	1	-	1.0	ms
		3.3V, >66 MHz, <15 pF	ı	_	55	ps
		3.3V, >66 MHz, <30 pF, Standard. Drive	_	_	125	ps
Cycle-to-Cycle Jitter,	_	3.3V, >66 MHz, <30 pF, High Drive	-	_	100	ps
Peak ^[8, 9]	T _{JCC}	2.5V, >66 MHz, <15 pF, Standard. Drive	-	_	95	ps
		2.5V, >66 MHz, <15 pF, High Drive	_	_	65	ps
		2.5V, >66 MHz, <30 pF, High Drive	_	_	145	ps

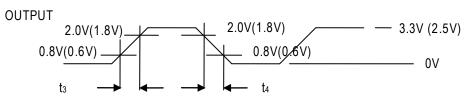
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1(408) 944-0800 • fax +1(408) 474-1000 • www.micrel.com Rev 12/13/11 Page 6

3.3V AND 2.5V AC ELECTRICAL SPECIFICATIONS (continued)

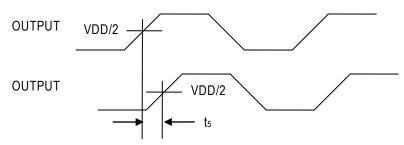
Description	Parameter	Test Conditions	Min	Тур	Max	Unit
		3.3V, 66-100 MHz, <15 pF	_	_	75	ps
		3.3V, >100 MHz, <15 pF	_	_	45	ps
		3.3V, >66 MHz, <30 pF, Standard Drive	_	_	100	ps
Period Jitter, Peak[8,9]	T_PER	3.3V, >66 MHz, <30 pF, High Drive	_	_	70	ps
		2.5V, >66 MHz, <15 pF, Standard. Drive	_	_	60	ps
		2.5V, 66-100 MHz, <15 pF, High Drive	_	_	60	ps
		2.5V, >100 MHz, <15 pF, High Drive	_	_	45	ps

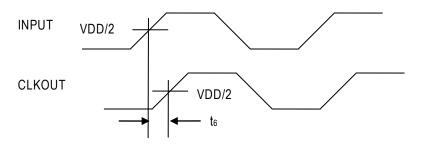

Notes:

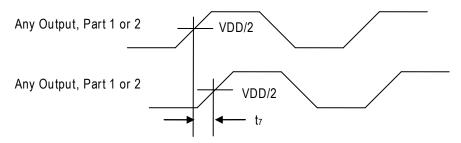
- 7. For the given maximum loading conditions. See C_L in Operating Conditions Table.
- 8. Parameter is guaranteed by design and characterization. Not 100% tested in production.
- 9. Typical jitter is measured at 3.3V or 2.5V, 29°C, with all outputs driven into the maximum specified load.



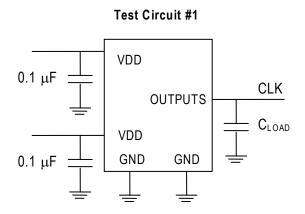
SWITCHING WAVEFORMS


Duty Cycle Timing

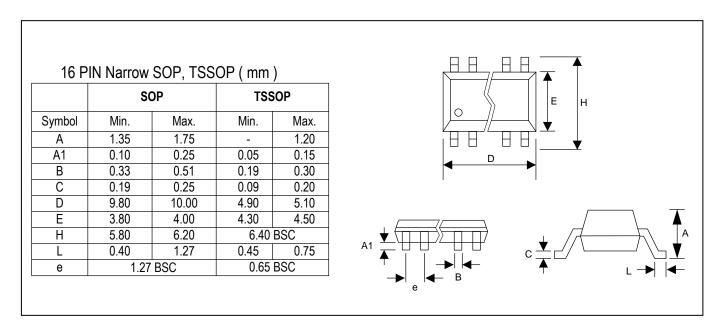

All Outputs Rise/Fall Time


Output-Output Skew

Input-Output Propagation Delay

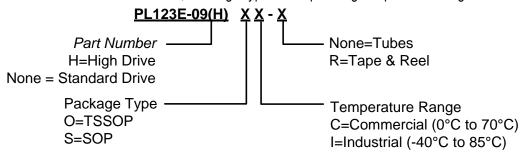


Device-Device Skew



TEST CIRCUITS

PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)


ORDERING INFORMATION

For part ordering, please contact our Sales Department: 2180 Fortune Drive, San Jose, CA 95131, USA

Tel: (408) 944-0800 Fax: (408) 474-1000

PART NUMBER

The order number for this device is a combination of the following: Device number, Package type and Operating temperature range

Part/Order Number	Marking	Package Option
PL123E-09OC	P123E09	16-Pin TSSOP Tube
PL123E-09OC-R	OC LLLLL	16-Pin TSSOP (Tape and Reel)
PL123E-09HOC	P123E09H	16-Pin TSSOP Tube
PL123E-09HOC-R	OC LLLLL	16-Pin TSSOP (Tape and Reel)
PL123E-09SC	P123E09 SC	16-Pin SOP Tube
PL123E-09SC-R	LLLLL	16-Pin SOP (Tape and Reel)
PL123E-09HSC	P123E09H	16-Pin SOP Tube
PL123E-09HSC-R	SC LLLLL	16-Pin SOP (Tape and Reel)
PL123E-09OI	P123E09 OI	16-Pin TSSOP Tube
PL123E-09OI-R	LLLLL	16-Pin TSSOP (Tape and Reel)
PL123E-09HOI	P123E09H OI	16-Pin TSSOP Tube
PL123E-09HOI-R	LLLLL	16-Pin TSSOP (Tape and Reel)
PL123E-09SI	P123E09 SI	16-Pin SOP Tube
PL123E-09SI-R	LLLLL	16-Pin SOP (Tape and Reel)
PL123E-09HSI	P123E09H SI	16-Pin SOP Tube
PL123E-09HSI-R	LLLLL	16-Pin SOP (Tape and Reel)

*Note: LLLLL designates lot number

Micrel Inc., reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Micrel is believed to be accurate and reliable. However, Micrel makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: Micrel's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Micrel Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1(408) 944-0800 • fax +1(408) 474-1000 • www.micrel.com Rev 12/13/11 Page 10