

The FX-700 is a crystal-based frequency translator used in communications applications where low jitter is paramount.
Performance advantages include superior jitter performance, high output frequencies and small package size. Advanced custom ASIC technology results in a highly robust, reliable and predictable device. The device is packaged in a 16 pad ceramic package with a hermetic seam welded lid.

Features

- $5.0 \times 7.5 \mathrm{~mm}$, Hermetically sealed SMD package
- Frequency Translation to 77.760 MHz
- 3.3 Volt or 5.0 Volt Supply
- Tri-State Output allows board test
- Lock Detect
- Commercial or Industrial Temp. Range
- CMOS Output
- Absolute Pull Range Performance to +/-100 ppm
- Capable of locking to an 8 kHz pulse/BITS clock
- Product is free of lead and compliant to EC RoHS Directive

Block Diagram

Figure 1. Functional block diagram

Table 1. Electrical Performance					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency ${ }^{4}$ Input Frequency Output Frequency	$\begin{gathered} \mathrm{F}_{\text {IN }} \\ \mathrm{F}_{\text {out }} \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 0.1 \\ \hline \end{gathered}$		$\begin{gathered} 77.76 \\ 80.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Capture Range (ordering option)	APR	$\pm 50, \pm 80$, or ± 100			ppm
Supply Voltage ${ }^{1}\left(\mathrm{~V}_{\mathrm{DO}^{\prime}} \mathrm{V}_{\mathrm{DB}^{\prime}} \mathrm{V}_{\mathrm{DA}^{\prime}} \mathrm{V}_{\mathrm{DO}}\right)$ Current ${ }^{5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$	$\begin{gathered} 4.5 \\ 2.97 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$	$\begin{gathered} 5.5 \\ 3.63 \\ 40 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
Input Input High Voltage Input Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$0.7 * V_{\text {DD }}$		$0.3{ }^{*} \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Output Output High Voltage Outpuit Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$0.9 * V_{\text {DD }}$		$0.1{ }^{*} \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Output Rise Time ${ }^{2}$ Fall Time ${ }^{2}$ Duty Cycle ${ }^{3}$ Jitter Generation - 80.0MHz output	$\begin{gathered} \mathrm{t}_{\mathrm{R}} \\ \mathrm{t}_{\mathrm{F}} \\ \text { SYM } \\ \Phi_{\mathrm{J}} \\ \hline \end{gathered}$	40	$\begin{aligned} & 50 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \% \\ \mathrm{ps} \text { prms } \\ \hline \end{gathered}$
Operating Temp (ordering option)	$\mathrm{T}_{\text {op }}$	0/70,-40/85			${ }^{\circ} \mathrm{C}$

1. A 0.01 uF high frequency ceramic capacitor in parallel with a $0.1 u \mathrm{~F}$ low frequency tantalum bypass capacitor is recommended
2. Figure 2 defines the waveform parameters. Figure 3 illustrates the standard test conditions under which these parameters are tested and specified.
3. Duty Cycle is defined as (on time/period) with Vs = Vdd/2 per Figure 2. Duty Cycle is measured with a $15 p f$ load per Figure 3.
4. Other frequencies may be available, please contact factory.
5. Combined Current From VDD, VDO, VDA, and VDB

Figure 2. Output Waveform

Figure 3. Output Test Conditions ($25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Table 2. Absolute Maximum Ratings			
Parameter	Symbol	Ratings	
Power Supply	V_{DD}	7	Unit
Storage Temperature	$\mathrm{T}_{\text {STR }}$	-55 to 125	V

Reliability

The FX-700 is capable of meeting the following qualification tests

Table 3. Environmental Compliance	
Mechanical Shock	Conditions
Mechanical Vibration	MIL-STD-883, Method 2002
Solderability	MIL-STD-883, Method 2007
Gross and Fine Leak	MIL-STD-883, Method 2003
Resistance to Solvents	MIL-STD-883, Method 1014

Handling Precautions

Although ESD protection circuitry has been designed into the the FX-700, proper precautions should be taken when handling and mounting. VI employs a human body model and a charged-device model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance $=1.5 \mathrm{Kohms}$ and capacitance $=100 \mathrm{pF}$ is widely used and therefore can be used for comparison purposes

Model	Minimum	4. Predicted ESD Ratings
Human Body Model	1500 V	MIL-STD 883, Method 3015
Charged Device Model	1000 V	JEDEC, JESD22-C101

Solder Reflow Profile

Table 5. Reflow Profile (IPC/JEDEC J-STD-020C)		
Parameter	Symbol	Value
PreHeat Time	t_{5}	60 sec Min, 180 sec Max
Ramp Up	$\mathrm{R}_{\text {up }}$	$3^{\circ} \mathrm{C} / \mathrm{sec}$ Max
Time Above $217^{\circ} \mathrm{C}$	t_{L}	60 sec Min, 150 sec Max
Time To Peak Temperature	$\mathrm{t}_{\text {AMB-P }}$	480 sec Max
Time At $260{ }^{\circ} \mathrm{C}$	t_{p}	20 sec Min, 40 sec Max
Ramp Down	R_{DN}	$6^{\circ} \mathrm{C} / \mathrm{sec}$ Max

The device has been qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the PbFree small body requirements. The temperatures refer to the topside of the package, measured on the package body surface. The FX-700 device is hermetically sealed so an aqueous wash is not an issue.

Figure 3. Suggested IR Profile

Dimensions in mm.

Figure 4. Tape and Reel

FX-700 Theory of Operation

The FX-700 includes an integrated phase detector, current mode charge pump, programmable frequency dividers and VCXO. The FX-700 will translate an input frequency such as $8 \mathrm{kHz}, 1.544 \mathrm{MHz}$ or 19.440 MHz to a specific output frequency which is an integer multiple (1-16384) of the input frequency and less than or equal to 77.760 MHz . For clock smoothing applications, the input frequency is typically internally divided down by a factor of $64(2 N$ where $N=6)$ by the input frequency divider and this frequency becomes an input to the phase detector. The integrated frequency dividers (factory programmed) and crystal based VCXO allows for a large range of possible frequency translations and clock smoothing applications.

The FX-700's PLL is a feedback system which forces the output frequency to lock in both phase and frequency to the input frequency. While there will be some phase error, theory states there is no frequency error. The loop filter design will dictate many key parameters such as jitter reduction, stability, lock range and acquisition time. The external second order passive loop filter is a complex impedance in parallel with the input capacitance of the VCXO. The loop filter converts the charge pump output into the VCXO's control voltage. VI's loop filter design methodology involves the calculation of the open loop gain bandwidth and corresponding phase margin to determine the optimal component values that ensure high loop stability and acceptable lock in time. As a rule of thumb, the VCXO gain is typically $100 \mathrm{ppm} /$ volt and the charge pump current is typically 32 uA .

VI's Applications Engineering staff can provide the external loop filter component values required to meet specific system requirements and application.

Suggested FX-700 Circuit Configuration Drawing

Table 7. Standard Frequencies

0.00100000	A1	0.25600000	AM	3.08800000	B6	10.4142850	DV	19.6608000	DB	27.6480000	FB	41.6571440	KP	54.7460000	J
0.00200000	AR	0.32000000	AW	3.24000000	BL	10.4582260	DU	19.6989680	DK	28.7040000	F1	41.6600000	LM	55.0000000	JX
0.00320000	AG	0.38400000	AY	3.25000000	BC	10.4872000	DN	19.7190000	DH	29.4912000	F5	41.8329130	KT	60.0000000	JR
0.00400000	A2	0.40000000	AF	3.37500000	BH	10.9490000	DG	19.9218750	ED	29.5000000	F9	42.0000000	JB	61.3800000	KY
0.00800000	A3	0.48000000	AK	3.84000000	B7	10.9500000	DJ	20.0000000	E2	30.0000000	HE	42.0101690	KV	61.4400000	J5
0.00819200	BY	0.50000000	BP	4.00000000	BN	11.1840000	DF	20.1416000	E3	30.7200000	H1	42.5000000	JC	62.2080000	J8
0.00946900	AU	0.51200000	AJ	4.09600000	B5	12.2880000	D8	20.4800000	E4	30.8800000	HF	42.6600000	JZ	62.5000000	J9
0.01000000	A6	0.65545000	AE	4.19430400	CJ	12.3076860	DY	20.5444340	EF	31.2500000	H8	44.2095440	KX	62.9145000	LE
0.01562500	AL	0.77200000	AT	5.00000000	C6	12.3520000	D1	20.7135000	E1	32.0000000	H2	44.4343000	LF	63.3600000	J
0.01573400	AD	0.96000000	A7	5.12000000	CD	12.8000000	D2	20.8285720	EG	32.7680000	H3	44.6218000	JW	63.8976000	JN
0.01575000	AC	1.00000000	BB	6.14400000	CG	13.0000000	D3	20.8286000	EB	33.0000000	H7	44.7360000	J3	64.0000000	JT
0.01600000	A4	1.02400000	B2	6.29140000	CC	13.5000000	DT	20.9165460	EH	33.3330000	HC	44.9280000	JE	64.1520000	JH
0.02400000	BX	1.21500000	BU	6.29145600	CF	14.8351600	DL	21.0050840	EJ	34.3680000	H6	45.1584000	JG	65.5360000	J6
0.02500000	BR	1.22880000	BK	6.31200000	C7	15.0000000	D4	22.0000000	E9	34.5600000	HB	45.8240000	JM	66.0000000	JA
0.03200000	BW	1.25000000	BG	6.48000000	C2	15.0336000	DR	22.1047720	EK	36.8640000	HG	46.0379460	LG	70.0000000	KB
0.04000000	AP	1.33330000	BF	6.75000000	СВ	15.3600000	DW	22.2171000	E5	37.0560000	H4	46.7200000	JK	70.6560000	KC
0.04410000	AA	1.50000000	BE	7.68000000	C9	16.0000000	D9	22.5792000	E8	37.1250000	H9	46.8750000	JY	71.6100000	KF
0.04800000	AB	1.53600000	BV	7.77600000	C5	16.3840000	D5	24.0000000	EC	37.5000000	HK	48.0000000	JV	73.7280000	K8
0.04807700	AV	1.54400000	B3	8.19200000	C3	17.1840000	DE	24.5760000	E6	38.8800000	H5	49.1520000	J7	74.1250000	K1
0.05000000	BT	1.92000000	B1	9.21600000	CH	18.4320000	D7	24.7040000	E7	39.0625000	HH	49.4080000	J2	74.1758000	KA
0.06400000	A5	2.00000000	B8	9.72000000	C8	18.5280000	DC	25.0000000	F7	39.3216000	HD	50.0000000	JD	74.2500000	K7
0.08000000	A9	2.04800000	B4	9.75000000	CE	18.7500000	EE	25.1658000	F8	39.8437500	HJ	50.0480000	KD	75.0000000	KH
0.09600000	CN	2.30400000	BD	9.83040000	C1	19.2000000	DD	25.6000000	F6	40.0000000	JF	51.2000000	LL	76.8000000	K4
0.10000000	AH	2.45760000	BJ	10.0000000	C4	19.3926580	DX	25.9200000	F2	40.2830630	KK	51.8400000	J4	77.7600000	K2
0.12800000	AX	2.50000000	BM	10.2300000	DP	19.4400000	D6	26.0000000	F3	40.9600000	J1	52.0000000	JP		
0.24300000	A8	2.55750000	B9	10.2400000	DM	19.5312500	DZ	27.0000000	F4	41.0888870	KM	53.3300000	JU		

Note: Not all combinations will be availabe - check with the factory to determine the optimum configuration for your application

Example: FX-700-EAE-KNXN-25M000000

* Add _SNPBDIP for tin lead solder dip Example: FX-700-EAE-KNXN-25M0000000_SNPBDIP

Revision History

Revision Date	Approved	Description
Feb 06, 2014	TG	Updated Vectron Asia contact address
Jan 18,2016	VN	Updated Frequency Table - Corrected typo for "A1" frequency.
Apr 18,2017	RC	Updated Frequency Table - Include "CN" frequency
Aug 10,2018	FB	Updated logo and contact information, added "SNPBDIP" ordering option

a Microchip company

Microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace \& defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or
parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided 'as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and serices at any time without notice.
©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

