

Current Mode PWM Controller

Description

The SG1846 family of control ICs provides the required features to implement Fixed Frequency, Current mode control schemes while maintaining a minimum external parts count. The advanced performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier-to-design control loop. Topological advantages include, inherent pulse-by-pulse current limiting capability, automatic symmetry correction for push-pull converters, and the ability to parallel "power modules" while maintaining equal current sharing.

Protection circuitry includes built-in under-voltage lockout and programmable current limit in addition to soft start capability. A shutdown function is also available which can initiate either a complete shutdown with automatic restart, or latch the supply off.

Other features include fully latched operation, doublepulse suppression, dead-time adjust capability, and a ±1% trimmed bandgap reference.

Block Diagram

Features

- Automatic Feed-forward Compensation
- Programmable Pulse by Pulse Current Limiting
- Automatic Symmetry Correction in Push-pull Configuration
- Enhanced Load Response Characteristics
- Parallel Operation Capability for Modular Power Systems
- Differential Current Sense Amplifier with Wide Common-mode Range
- Double Pulse Suppression
- 200mA Totem-pole Outputs
- ± 1% Bandgap Reference
- Under-voltage Lockout
- Soft-start and Shutdown Capability
- 500kHz Operation

High Reliability Features

- Available To MIL-STD-883 883, ¶ 1.2.1
- Available to DSCC
 - Standard Microcircuit Drawing (SMD)
- SGR1846 Rad-Tolerant Version Available

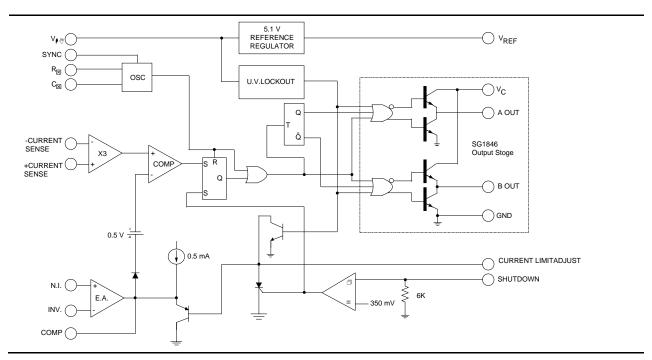


Figure 1 - Block Diagram

Connection Diagrams and Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type	Connection Diagram
		16-PIN	SG1846J-883B		C.L./SOFTSTART 1 16 SHUTDOWN
-55°C to 125°C	J	CERAMIC DUAL INLINE	SG1846J-DESC	CERDIP	V _{REF} □ 2 15 → +V _{IN} (-) C.S. □ 3 14 □ OUTPUT B (+) C.S. □ 4 13 □ V _C
		PACKAGE	SG1846J		(+) ERROR AMP ☐5 12☐ GROUND (-) ERROR AMP ☐6 11☐ OUTPUT A
-25°C to 85°C	N	16-PIN PLASTIC DIP	SG2846N	PDIP	COMPENSATION ☐7 10 SYNC C _T ☐8 9 R _T N Package: RoHS Complaint / Pb-free Transition DC: 0503
0°C to 70°C	14	PACKAGE	SG3846N	1 011	N Package: RoHS / Pb-free 100% Matte Tin Lead Finish
-25°C to 85°C	DW	16-PIN WIDEBODY	SG2846DW	COMP	C.L/SOFTSTART
0°C to 70°C	DW	PLASTIC SOIC PACKAGE ⁴	SG3846DW	SOWB	COMPENSATION 7 10 SYNC CT 8 9 RT DW Package: RoHS Complaint / Pb-free Transition DC: 0516 DW Package: RoHS / Pb-free 100% Matte Tin Lead Finish
-55°C to 125°C	F	16-PIN CERAMIC FLAT PACK PACKAGE ³	SG1846F-DESC	FLATPAK	CL/SOFTSTART
		20-PIN	SG1846L-883B		1. N.C. 2. C.L./SOFTSTART 3. V REF 4 11. N.C. 12. RT 18 13. SYNC
	L	CERAMIC LLC	SG1846L-DESC	CLCC	4. (-)°CS. 5. (17 14. OUTPUT A 5. (+) C.S. 6. (16 15. GROUND 6. N.C. (16 16. N.C. 7. (+) ERROR AMP 7. (17 17. V C 14 18. OUTPUT B
		PACKAGE ³	SG1846L		9. COMPENSATION 9 10 11 12 13 19. V IN 20. SHUTDOWN

Notes:

- 1. Contact factory for DESC part availability.
- 2. All parts are viewed from the top.
- Consult factory for product availability.
 The SG2846 & SG3846 is available shipped as tape & reel with the addition of a –TR suffix.
- Hermetic Packages J, F, & L use Pb37/Sn63 hot solder lead finish, contact factory for availability of RoHS versions.

Absolute Maximum Ratings

Parameter	Value	Units
Supply Voltage (+V _{IN})	40	V
Collector Supply Voltage(V _C)	40	V
Analog Inputs (Pins 3, 4, 5, 6, and 16)	-0.3V to +V _{IN}	V
Logic Input	-0.3V to 5.5V	V
Source/Sink Load current (continuous)	200	mA
Source/Sink Load Current (peak, 200 ns)	500	mA
Reference Load Current	30	mA
Soft Start Sink Current	50	mA
Sync Output Current	5	mA
Error Amplifier Output Current	5	mA
Oscillator Charging current (Pin 9)	5	mA

Parameter	Value	Units
Operating Junction Temperature Hermetic (J, L, F Packages)	150	°C
Operating Junction Temperature Plastic (N, DW Package)	150	°C
Storage Temperature Range	-65 to 150	°C
Lead Temperature (Soldering, 10 Seconds)	300	°C
RoHS Peak Package Solder Reflow Temp. (40 sec. max. exp.)	260 (+0, -5)	°C
1. Values beyond which damage may occur.	·	
2. Pin numbers refer to ceramic J package.		

Thermal Data

Parameter	Value	Units
J Package:	•	
Thermal Resistance-Junction to Case, θ _{JC}	30	°C/W
Thermal Resistance-Junction to Ambient, θ _{JA}	80	°C/W
N Package:		
Thermal Resistance-Junction to Case, θ _{JC}	40	°C/W
Thermal Resistance-Junction to Ambient, θ _{JA}	65	°C/W
DW Package:		•
Thermal Resistance-Junction to Case, θ _{JC}	40	°C/W
Thermal Resistance-Junction to Ambient, θ _{JA}	95	°C/W
F Package:		
Thermal Resistance-Junction to Case, θ _{JC}	70	°C/W
Thermal Resistance-Junction to Ambient, θ _{JA}	115	°C/W
L Package:		
Thermal Resistance-Junction to Case, θ _{JC}	35	°C/W
Thermal Resistance-Junction to Ambient, θ _{JA}	120	°C/W

Notes:

- 1. Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$.
- 2. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/PCBoard system. All of the above assume no ambient airflow.

Recommended Operating Conditions

Parameter	Value	Units
Supply Voltage Range	8 to 40	V
Collector Supply Voltage Range	4.5 to 40	V
Source/Sink Output Current (continuous)	100	mA
Source/Sink Output Current (peak 200ns)	200	mA
Reference Load Current	0 to 10	mA
Oscillator Frequency Range	1 to 500	kHz
Oscillator Timing Resistor (R _T)	2 to 100	kΩ
Oscillator Timing Capacitor (C _T)	1 to 100	nF
Operating Ambient Temperature Range		
SG1846	55 to 125	°C
SG2846	25 to 85	°C
SG3846	0 to 70	°C

Electrical Characteristics

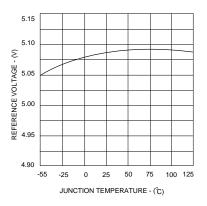
Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1846 with -55°C \leq T_A \leq 125°C, SG2846 with -25°C \leq T_A \leq 85°C, SG3846 with 0°C \leq T_A \leq 70°C, +V_{IN} = 15V. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Sumb al	Parameter	Test Condition	SG1846 SG2846			SG3846			Units
Symbol	Farameter	rest Condition	Min	Тур	Max	Min	Тур	Max	Ullits
Reference	e Section			•	•		•	•	
V_{REF}	Output Voltage	$T_J = 25^{\circ}C, I_O = 1mA$	5.05	5.10	5.15	5.00	5.10	5.20	٧
V _{REG}	Line Regulation	V _{IN} = 8V to 40V		5	20		5	20	mV
I _{REG}	Load Regulation	$I_L = 1mA \text{ to } 10mA$		3	15		3	15	mV
	Temperature Stability ¹			0.4			0.4		mV/°C
	Total Output Variation ¹	Line, Load and Temperature	5.00		5.20	4.95		5.25	V
	Output Noise Voltage ¹	10Hz ≤ f ≤ 10kHz. T _J = 25°C		100			100		μV
	Long Term Stability ¹	T _J = 125°C, 1000Hrs.		5			5		mV
VREFISC	Short Circuit Output Current	V _{REF} = 0V	-10	-45		-10	-45		mA
Oscillato	r Section ⁶								
osc	Initial Accuracy	T _J = 25°C	39	43	47	39	43	47	kHz
OSC _{VS}	Voltage Stability	V _{IN} = 8V to 40V		1	2		1	2	%
OSC _{TS}	Temperature Stability ¹	Over Operating Range		1			1		%
VOH	Sync Output High Level		3.9	4.35		3.9	4.35		V
VOL	Sync Output Low Level			2.3	2.5		2.3	2.5	V
VIH	Sync Input High Level	Pin 8 = 0V	3.9			3.9			٧
VIL	Sync Input Low Level	Pin 8 = 0V			2.5			2.5	V
IIL	Sync Input Current	Sync Voltage = 5.25V, Pin 8 = 0V		1.2	1.5		1.2	1.5	mA

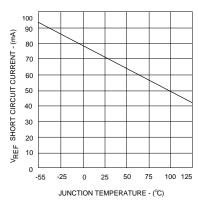
Symbol	Parameter	Test Condition	SG1846 SG2846			SG3846			Units
			Min	Тур	Max	Min	Тур	Max	
Error Al	IP Section				_				
EA _{VOS}	Input Offset Voltage			0.5	5		0.5	10	mV
EA _{IIB}	Input Bias Current			-0.6	-1		-0.6	-2	μΑ
EA _{IOS}	Input Offset Current			40	250		40	250	nA
EA _{CM}	Common Mode Range	V _{IN} = 8V to 40V	0		V _{IN} - 2V	0		V _{IN} -2V	٧
EA _{AV}	Open Loop Voltage Gain	V _O = 1.2V to 3V, V _{CM} = 2V	80	105		80	105		dB
EA _{UGB}	Unity Gain Bandwidth ¹	T _J = 25°C	0.7	1.0		0.7	1.0		MHz
EA _{CMRR}	CMRR	$V_{CM} = 0V \text{ to } 38V, V_{IN} = 40V$	75	100		75	100		dB
EA _{PSRR}	PSRR	V _{IN} = 8V to 40V	80	105		80	105		dB
EA _{SNK}	Output Sink Current	$V_{ID} = -15 \text{mV to } -5 \text{V}, V_{PIN 7} = 1.2 \text{V}$	2	6		2	6		mA
EA _{SRC}	Output Source Current	$V_{ID} = 15 \text{mV to 5V}, V_{PIN 7} = 2.5 \text{V}$	-0.4	-0.5		-0.4	-0.5		mA
EA _{VOH}	High Level Output Voltage	$R_L = 15k\Omega$ (Pin 7)	4.3	4.6		4.3	4.6		V
EA _{VOL}	Low Level Output Voltage	$R_L = 15k\Omega$ (Pin 7)		0.7	1		0.7	1	V
Current S	Sense Amplifier Section								
CS _{AV}	Amplifier Gain ^{2 &3}	V _{PIN 3} = 0V, Pin 1 Open	2.5	2.75	3.0	2.5	2.75	3.0	V
	Maximum Differential ³ Input Signal ² (V _{PIN 4} - V _{PIN 3})	Pin 1 Open R _L = 15kΩ (Pin 7)	1.1	1.2		1.1	1.2		٧
	Input Offset Voltage ²	V _{PIN 1} = 0.5V, Pin 7 Open		5	25		5	25	mV
CS _{CMRR}	CMRR	$V_{CM} = 1V$ to $12V$	60	83		60	83		dB
CS _{PSRR}	PSRR	$V_{IN} = 8V$ to $40V$	60	84		60	84		dB
CS _{IIB}	Input Bias Current ²	V _{PIN 1} = 0.5V, Pin 7 Open		-2.5	-10		-2.5	-10	μΑ
CSI _{oc}	Input Offset Current ²	V _{PIN 1} = 0.5V, Pin 7 Open		0.08	1		0.08	1	μΑ
CS _{CM}	Input Common Mode Range		0		V _{IN} - 3	0		V _{IN} -3	٧
	Delay to Outputs ¹	$T_J = 25^{\circ}C$		200	500		200	500	ns
Current I	imit Adjust Section								
	Current Limit Offset Voltage ²	$V_{PIN 3} = 0$, $V_{PIN 4} = 0V$, Pin 7 Open	0.45	0.5	0.55	0.45	0.5	0.55	V
CL _{IIB}	Input Bias Current	$V_{PIN 5} = V_{REF}, V_{PIN 6} = 0V$		-10	-30		-10	-30	μΑ

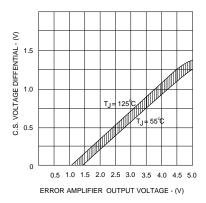
Symbol	Parameter	Test Condition		SG1846 SG2846			SG3846		
			Min	Тур	Max	Min	Тур	Max	
Shutdow	n Terminal Section								
SD	Threshold Voltage		250	350	400	250	350	400	mV
	Input Voltage Range		0		V _{IN}	0		V _{IN}	V
SD _{LC}	Minimum Latching Current; (I _{PIN 1}) ⁴		3.0	1.5		3.0	1.5		mA
	Maximum Non-Latching Current; (I _{PIN 1}) ⁵			1.5	0.8		1.5	0.8	mA
SD _{DELAY}	Delay to Outputs ¹	$T_J = 25$ °C		300	600		300	600	ns
Output S	ection								
	Collector Emitter Voltage		40			40			V
	Collector Leakage Current	V _C = 40V			200			200	μΑ
	Output Low Level	I _{SINK} = 20mA		0.1	0.4		0.1	0.4	٧
		I _{SINK} = 100mA		0.4	2.1		0.4	2.1	٧
	Output High Level	I _{SOURCE} = 20mA	13	13.5		13	13.5		٧
		I _{SOURCE} = 100mA	12	13.5		12	13.5		V
	Rise Time ¹	C _L = 1nF, T _J = 25°C		50	300		50	300	ns
	Fall Time ¹	C _L = 1nF, T _J = 25°C		50	300		50	300	ns
Under-Vo	Itage Lockout Section								
	Start-Up Threshold			7.7	8.0		7.7	8.0	V
	Threshold Hysteresis			0.75			0.75		٧
Total Star	ndby Current				L. L.		•		
IQ	Supply Current			17	21		17	21	mA

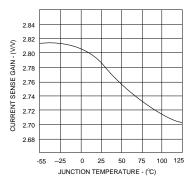
Notes:


These parameters, although guaranteed over the recommended operating conditions, are not tested in the production.
 Parameter measured at trip point of latch with V_{PIN.5} = V_{REF}, V_{PIN.6} = 0V.
 Amplifier gain defined as: G = ^{ΔV_{PIN.7}}/_{ΔV_{PIN.4}}; V_{PIN.4} = 0V to 1.0V
 Current into Pin 1 guaranteed to latch circuit in shutdown state.

Current into Pin 1 guaranteed not to latch circuit in shutdown state.


 $R_T = 10k\Omega$, $C_T = 4.7nF$


Characteristic Curves


Figure 2 · Reference Voltage Vs. Temperature

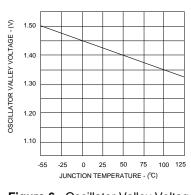

Figure 3 - V_{REF} Short Circuit Current Vs. Temperature

Figure 4 · Current Sense Threshold Vs. Error Amplifier Output

Figure 5 · Current Sense Gain Vs. Temperature

Figure 6 · Oscillator Valley Voltage Vs. Temperature

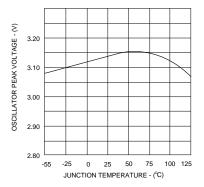


Figure 7 · Oscillator Peak Voltage Vs. Temperature

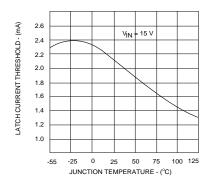


Figure 8 - Minimum SCR Latch Current

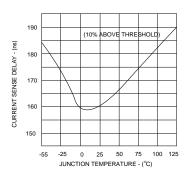
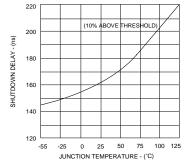



Figure 9 · Current Sense Delay Vs.
Temperature

Figure 10 · Shutdown Delay To Output Vs. Temperature

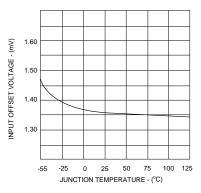
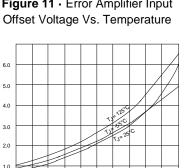



Figure 11 - Error Amplifier Input Offset Voltage Vs. Temperature

500

400

SATURATION VOLTAGE - (V)

Figure 14 - Output Transistor Saturation Voltage Vs. Output Current (Source Transistor)

OUTPUT CURRENT - (mA)

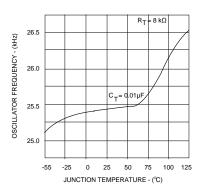


Figure 17 · Oscillator Frequency Vs. Temperature

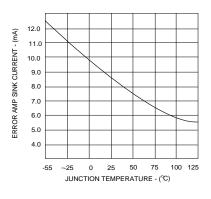


Figure 12 · Error AMP Sink Current Vs. Temperature

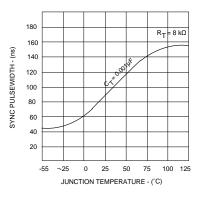


Figure 15 - Sync Pulsewidth Vs. Temperature

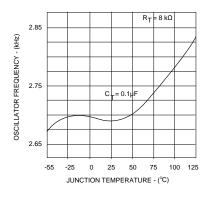


Figure 18 - Oscillator Frequency Vs. Temperature

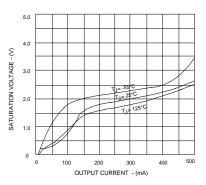


Figure 13 - Output Transistor Saturation Voltage Vs. Output Current (Sink Transistor)

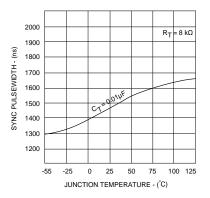


Figure 16 - Sync Pulsewidth Vs. Temperature

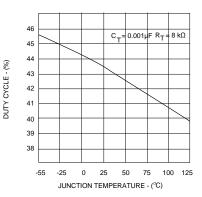


Figure 19 - Duty Cycle Vs. Temperature

Application Information

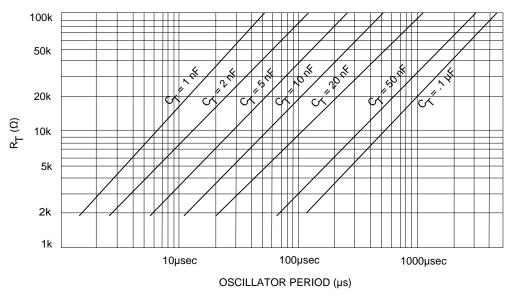


Figure 20 - Oscillator Frequency Curves

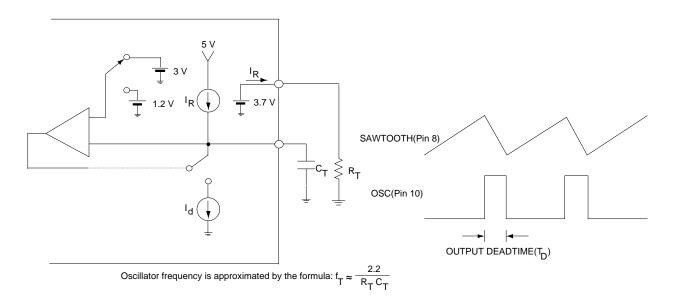


Figure 21 - Oscillator Circuit

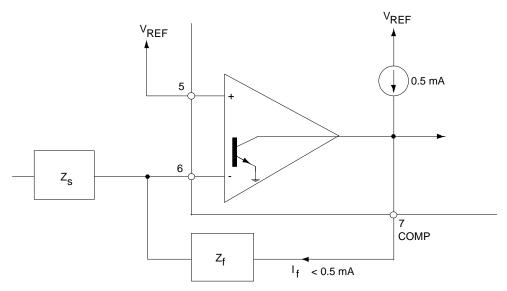


Figure 22 · Error Amp Output Configuration (Error amplifier can source up to 0.5 mA)

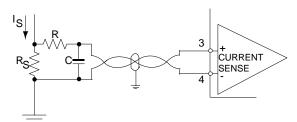


Figure 23 - Current Sense AMP Connections

A small RC filter may be required in some applications to reduce switch transients. Differential input allows remote noise free switching.

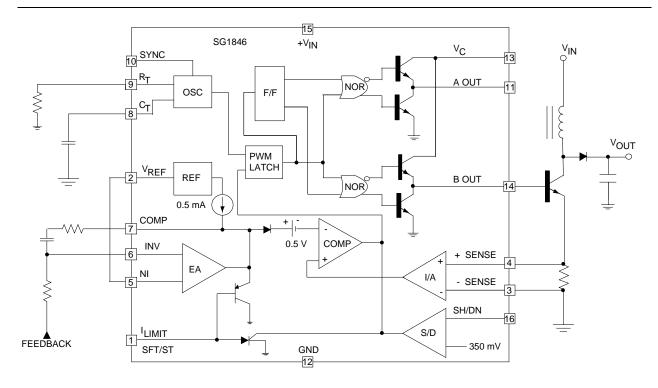


Figure 24 - Single Ended Boost Configuration

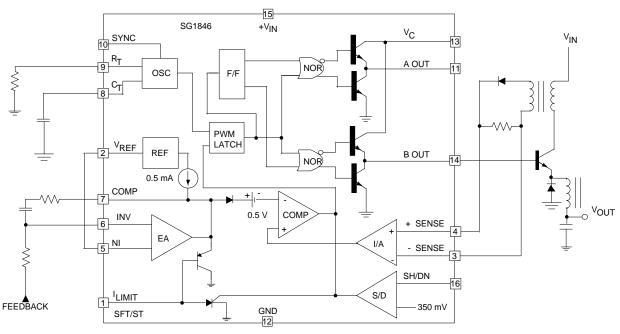


Figure 25 - Buck Converter with Current Sense Winding

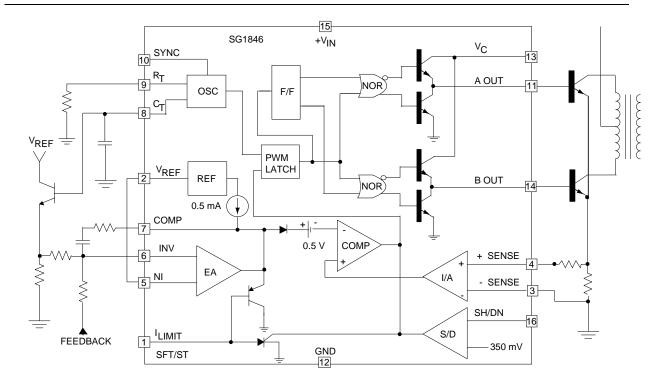


Figure 26 - Push/Pull Converter with Slope Compensation

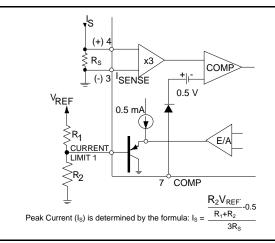


Figure 27 - Pulse by Pulse Current Limiting

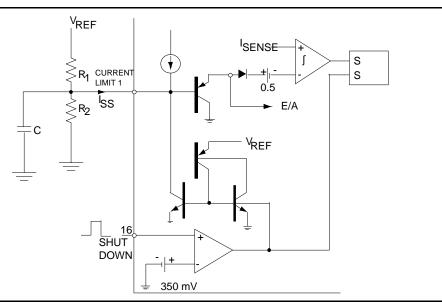


Figure 28 - Soft Start and Shutdown/Restart Functions

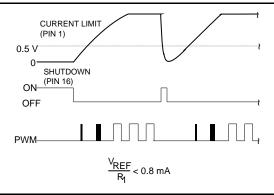
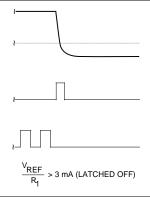
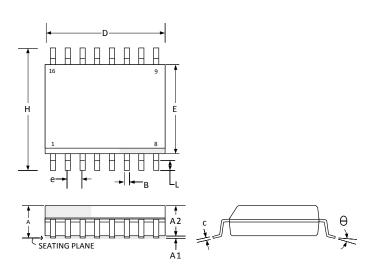


Figure 29 - Shutdown with Auto-Restart

If $\frac{V_{RBF}}{R_1}$ < 0.8 mA, the shutdown latch commutates. when I_{SS} < 0.8 mA, a restart cycle will be initiated.

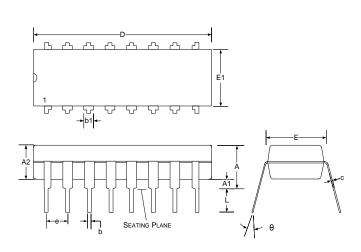



Figure 30 - Shutdown without Auto-Restart (Latched)

If $\frac{V_{RBF}}{R_1} > 3$ mA, the device will latch off until power is recycled.

Package Outline Dimensions

Controlling dimensions are in inches, metric equivalents are shown for general information.


Dim	MILLIM	ETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	2.06	2.65	0.081	0.104	
A1	0.10	0.30	0.004	0.012	
A2	2.03	2.55	0.080	0.100	
В	0.25	0.51	0.010	0.020	
С	0.23	0.32	0.009	0.013	
D	-	10.67	-	0.420	
Е	7.40	7.75	0.291	0.305	
е	1.27	BSC	0.05	BSC	
Н	10.00	10.65	0.394	0.419	
L	0.40	1.27	0.016	0.050	
θ	0°	8°	0°	8°	
*LC	-	0.10	-	0.004	

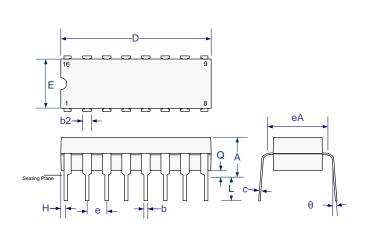
^{*}Lead co planarity

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 31 - DW 16-Pin SOWB Package Dimensions

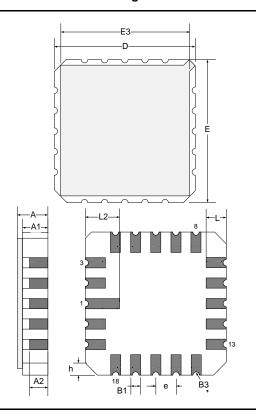
Dim	MILLIM	ETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	-	5.33	1	0.210	
A1	0.38	-	0.015	•	
A2	3.30	Тур.	0.13	0 Тур.	
b	0.36	0.56	0.014	0.022	
b1	1.14	1.78	0.045	0.070	
С	0.20	0.36	0.008	0.014	
D	18.67	19.69	0.735	0.775	
е	2.54	BSC	0.10	BSC	
E	7.62	8.26	0.300	0.325	
E1	6.10	7.11	0.240	0.280	
L	2.92	0.381	0.115	0.150	
θ	-	15°	-	15°	


Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 32 - N 16-Pin Plastic Dual Inline Package Dimensions

PACKAGE OUTLINE DIMENSIONS



Dim	MILLIMETERS		INCHES		
Dim	MIN	MAX	MIN	MAX	
Α		5.08		0.200	
b	0.38	0.51	0.015	0.020	
b2	1.04	1.65	0.045	0.065	
С	0.20	0.38	0.008	0.015	
D	19.30	19.94	0.760	0.785	
E	5.59	7.11	0.220	0.280	
е	2.54	BSC	0.100	BSC	
eA	7.37	7.87	0.290	0.310	
Н	0.63	1.78	0.025	0.070	
L	3.18	5.08	0.125	0.200	
α	-	15°	-	15°	
Q	0.51	1.02	0.020	0.040	

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 33 - J 16-Pin Ceramic Dual Inline Package Dimensions

Dim	MILLIM	ETERS	INCHES		
Dilli	MIN	N MAX MIN		MAX	
D/E	8.64	9.14	0.340	0.360	
E3	-	8.128	-	0.320	
е	1.270	BSC	0.050) BSC	
B1	0.635	TYP	0.02	5 TYP	
L	1.02	1.52	0.040	0.060	
Α	1.626	2.286	0.064	0.090	
h	1.016 TYP		0.04	0 TYP	
A1	1.372	1.68	0.054	0.066	
A2	-	1.168	-	0.046	
L2	1.91	2.41	0.075	0.95	
В3	0.20	3R	0.008R		

Note:

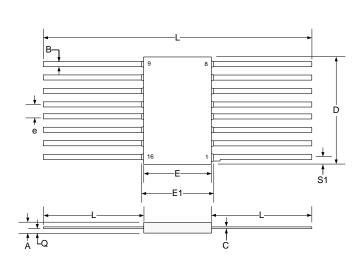

All exposed metalized area shall be gold plated 60 micro-inch minimum thickness over nickel plated unless otherwise specified in purchase order.

Figure 34 · L 20-Pin Ceramic Leadless Chip Carrier (LCC) Package Outline Dimensions

PACKAGE OUTLINE DIMENSIONS

Controlling dimensions are in inches, metric equivalents are shown for general information.

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α	1.65	1.91	0.057	0.067
b	0.38	0.48	0.010	0.019
С	0.102	0.152	0.004	0.006
D	-	11.18	-	0.290
E	6.22	6.74	0.238	0.252
E1	-	7.62	-	0.272
е	1.27 BSC		0.050 BSC	
L	6.35	9.40	0.250	0.370
Q	0.51	1.02	0.020	0.040
S1	0.20		0.008	

Note:

- 1. Lead No. 1 is identified by tab on lead or dot on cover.
- Leads are within 0.13mm (.0005") radius of the true position (TP) at maximum material condition.
- 3. Dimension "e" determines a zone within which all body and lead irregularities lie.

Figure 35 - F 16-Pin Ceramic Flatpack Package Dimensions

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

SG1846.1.2/11.14