

3.3V, PRECISION, 33MHz to 500MHz PROGRAMMABLE LVPECL AND HSTL BUS CLOCK SYNTHESIZER

Precision Edge[®] SY89531L

FEATURES

■ Integrated synthesizer plus fanout buffers, clock drivers, and translator in a single 64-pin package

■ 3.3V ±10% power supply

■ Low jitter: <50ps cycle-to-cycle

■ Low pin-to-pin skew: <50ps

■ 33MHz to 500MHz output frequency range
■ Direct interface to crystal: 14MHz to 18MHz

■ LVPECL/HSTL outputs

■ TTL/CMOS compatible control logic

3 independently programmable output frequency banks:

9 differential output pairs @BankB (HSTL)

2 differential output pairs @BankA (LVPECL)

• 2 differential output pairs @BankC (LVPECL)

■ ExtVCO input allows synthesizer and crystal interface to be bypassed

■ Available in 64-pin EPAD-TQFP

Precision Edge®

DESCRIPTION

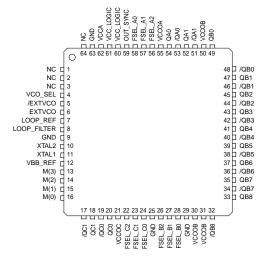
The SY89531L programmable clock synthesizer/driver is part of a 3.3V, high-frequency, precision PLL-based clock synthesizer family optimized for multi-frequency, multi-processor server, enterprise networking and other computing applications that require the highest precision and integration. The device integrates the following blocks into a single monolithic IC:

- PLL (Phase-Lock-Loop)-based synthesizer
- · Fanout buffers
- · Clock generator (dividers)
- · Logic translation (LVPECL, HSTL)

This level of integration minimizes the additive jitter and part-to-part skew associated with the discrete alternative, resulting in superior system-level timing as well as reduced board space and power. For applications that must interface to a reference clock, see the SY89536L.

Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

APPLICATIONS


- Servers
- Workstations
- Parallel processor-based systems
- Other high-performance computing
- **■** Communications

PRODUCT SELECTION GUIDE

	In	put		Output	
Device	Crystal	Reference	BankA	BankB	BankC
SY89531L	Х		LVPECL	HSTL	LVPECL
SY89532L*	Х		LVPECL	LVPECL	LVPECL
SY89533L*	Х		LVPECL	LVDS	LVPECL
SY89534L*		Х	LVPECL	LVPECL	LVPECL
SY89535L*		Х	LVPECL	LVDS	LVPECL
SY89536L*		Х	LVPECL	HSTL	LVPECL

^{*}Refer to individual data sheet for details.

PACKAGE/ORDERING INFORMATION

64-Pin EPAD-TQFP (H64-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89531LHC	H64-1	Commercial	SY89531LHC	Sn-Pb
SY89531LHCTR ⁽²⁾	H64-1	Commercial	SY89531LHC	Sn-Pb
SY89531LHZ ⁽³⁾	H64-1	Commercial	SY89531LHZ with Pb-Free bar-line indicator	Matte-Sn Pb-Free
SY89531LHZTR ^(2, 3)	H64-1	Commercial	SY89531LHZ with Pb-Free bar-line indicator	Matte-Sn Pb-Free

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC Electricals only.
- 2. Tape and Reel
- 3. Pb-Free package is recommended for new designs.

PIN DESCRIPTION

Power

Pin Number	Pin Name	Pin Function
60, 61	V _{CC_Logic}	Power for Core Logic: Connect to 3.3V supply. 3.3V power pins are not internally connected on the die, and must be connected together on the PCB.
62	V _{CCA}	Power for PLL: Connect to "quiet" 3.3V supply. 3.3V power pins are not internally connected on the die, and must be connected together on the PCB.
55 30, 31, 50 21	V _{CCO} A V _{CCO} B V _{CCO} C	Power for Output Drivers: Connect all $V_{CCO}A$ and $V_{CCO}C$ pins to 3.3V supply and $V_{CCO}B$ pins to 1.8V supply.
9, 25, 63, 29 (exposed pad)	GND	Ground: Exposed pad must be soldered to a ground plane.

Configuration

Pin Number	Pin Name	Pin Function
4	VCO_SEL	LVTTL/CMOS Compatible Input: Selects between internal or external VCO. For external VCO, leave floating. Default condition is logic HIGH. Internal 25k Ω pull-up. When tied LOW, internal VCO is selected.
7	LOOP REF	Analog Input/Output: Provides the reference voltage for PLL loop filter.
8	LOOP FILTER	Analog Input/Output: Provides the loop filter for PLL. See "External Loop Filter Considerations" for loop filter values.
13,14,15,16	M (3:0)	LVTTL/CMOS Compatible Input: Used to change the PLL feedback divider. Internal 25k Ω pull-up. M0 = LSB. Default is logic HIGH. See "Feedback Divide Select" table.
22, 23, 24	FSEL_C (2:0)	LVTTL/CMOS Compatible Input: Bank C post divide select. Internal $25k\Omega$ pull-up. Default is logic HIGH. See "Post-Divide Frequency Select" table. FSEL_C0 = LSB.
26, 27, 28	FSEL_B (2:0)	LVTTL/CMOS Compatible Input: Bank B post divide select. Internal $25k\Omega$ pull-up. Default is logic HIGH. See "Post-Divide Frequency Select" table. FSEL_B0 = LSB.
56, 57, 58	FSEL_A (2:0)	LVTTL/CMOS Compatible Input: Bank A post divide select. Internal $25k\Omega$ pull-up. Default is logic HIGH. See "Post-Divide Frequency Select" table. FSEL_A0 = LSB.
59	OUT_SYNC	Banks A, B, C Output Synchronous Control: (LVTTL/CMOS compatible). Internal 25k Ω pull-up. After any bank has been programmed, toggle with a HIGH-LOW-HIGH pulse to resynchronize all output banks.

Input/Output

Pin Number	Pin Name	Pin Function
1, 2, 3	NC	No Connect: Leave floating.
10, 11	XTAL2, XTAL1	Crystal Input. Directly connect a series resonant crystal across inputs.
12	VBB_REF	Reference Output Voltage. Used for single-ended input. Maximum sink/source current = 0.5mA.
5, 6	/EXT_VCO, EXT_VCO	Differential "Any In" Compatible Input Pair. Allows for external VCO connection. The "Any In" input structure accepts many popular logic types. See "Input Interface for ExtVCO Pins" section for interface diagrams. Can leave unconnected if using internal VCO.
51, 52, 53, 54	QA1 to QA0	Bank A 100k LVPECL Output Drivers: Output frequency is controlled by FSEL_A (0:2). Terminate outputs with 50Ω to V_{CC} –2V. See "Output Termination Recommendations" section.
32–49	QB8 to QB0	Bank B Output Drivers: Differential HSTL outputs. See "Output Termination Recommendations" section. Output frequency is controlled by FSEL_B (0:2).
17, 18, 19, 20	QC1 to QC0	Bank C 100k LVPECL Output Drivers: Output frequency is controlled by FSEL_C (0:2). Terminate outputs with 50Ω to V_{CC} -2V. See "Output Termination Recommendations" section.
64	NC	No Connect: Leave floating.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{IN}) –0.5V to +4.0V
$\rm V_{CC}$ Pin Potential to Ground Pin (All $\rm V_{CC})$ –0.5V to +4.0V
Input Voltage (except XTAL 1,2 pins) (V $_{\rm IN}$) -0.5 V to V $_{\rm CCI}$
XTAL 1, 2 Input Voltage ($V_{XTAL\ 1,2}$) (V_{CC} –1.9V) to V_{CC}
DC Output Current (I _{OUT})
-LVPECL, HSTL outputs50mA
Lead Temperature (soldering, 20 sec.) 260°C
Storage Temperature (T _S)65°C to +150°C

Operating Ratings(Note 2)

Supply Voltage	
V _{CCO} A and V _{CCO} C 3.0	V to 3.6V
V _{CCO} B 1.6	V to 2.0V
Ambient Temperature (T _A) 0°C	to +85°C
Package Thermal Resistance (Junction-to-Ambier	nt)
With Die attach soldered to GND:	
TQFP (θ _{.IA}) Still-Air	23°C/W
TQFP (θ_{JA}) 200lfpm	18°C/W
TQFP (θ_{JA}) 500lfpm	15°C/W
With Die attach NOT soldered to GND, Note 3	
TQFP (θ_{JA}) Still-Air	44°C/W
TQFP (θ_{JA}) 200lfpm	36°C/W
TQFP (θ_{JA}) 500lfpm	30°C/W
Package Thermal Resistance (Junction-to-Case)	
TQFP (θ _{JC})	.4.3°C/W

DC ELECTRICAL CHARACTERISTICS

Power Supply

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CCA} V _{CC_Logic}	PLL and Logic Supply Voltage	Note 4	3.0	3.3	3.6	V
V _{CCO} A/C	Bank A and C V _{CC} Output		3.0	3.3	3.6	V
V _{CCO} B	Bank B V _{CC} Output LVPECL/HSTL		1.6	1.8	2.0	V
I _{CC}	Total Supply Current	Note 5	_	230	295	mA

- Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. It is recommended that the user always solder the exposed die pad to a ground plane for enhanced heat dissipation.
- Note 4. V_{CCA}, V_{CC LOGIC}, V_{CCO}A/C are *not* internally connected together inside the device. They must be connected together on the PCB. V_{CCO}B is a separate supply.
- Note 5. No load. Outputs floating, Banks A, B, and C enabled.

DC ELECTRICAL CHARACTERISTICS

LVCMOS/LVTTL Input Control Logic (V_{CCA} , V_{CC_LOGIC} , V_{CCO} A/C = +3.3V ±10%)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{IH}	Input HIGH Voltage		2.0	_	_	V
$V_{\rm IL}$	Input LOW Voltage			_	0.8	V
I _{IH}	Input HIGH Current			_	150	μА
I _{IL}	Input LOW Current		_	_	-300	μА

ExtVCO (Pins 5, 6) INPUT (All V_{CC} pins except $V_{CCO}B = +3.3V \pm 10\%$, $V_{CCO}B = +1.8V \pm 10\%$)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{ID}	Differential Input Voltage		100		_	mV
V _{IH}	Input HIGH Voltage		_	_	V _{CC} +0.3	V
V_{IL}	Input LOW Voltage		-0.3	1		V

100K LVPECL Output (All V_{CC} pins except $V_{CCO}B = +3.3V \pm 10\%$, $V_{CCO}B = +1.8V \pm 10\%$)(Note 6)

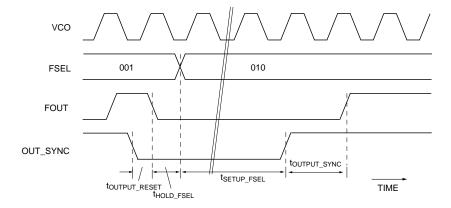
Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage		V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V
V_{OL}	Output LOW Voltage		V _{CC} -1.945	V _{CC} -1.820	V _{CC} -1.695	V
V_{BB}	Output Reference Voltage		V _{CC} -1.325	V _{CC} -1.425	V _{CC} -1.525	V
V _{OUT}	Output Voltage Swing		_	800	_	mV

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OUT}	Output Voltage Swing		_	800	_	mV
V _{OH}	Output HIGH Voltage		1.0		1.2	V
V_{OL}	Output LOW Voltage		0.2	_	0.4	V

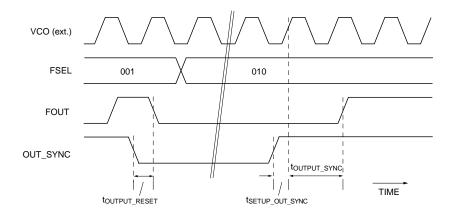
Note 6. All LVPECL outputs loaded with 50Ω to V_{CC} –2V.

Note 7. All HSTL outputs loaded with 50Ω to GND.

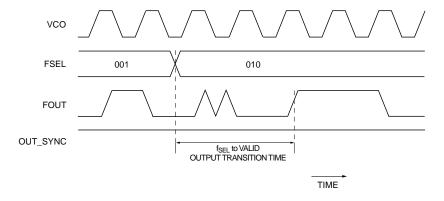
AC ELECTRICAL CHARACTERISTICS


 $V_{CC_LOGIC} = V_{CCA} = V_{CCO}A/C = +3.3V \pm 10\%, \ V_{CCO}B = +1.8V \pm 10\%$

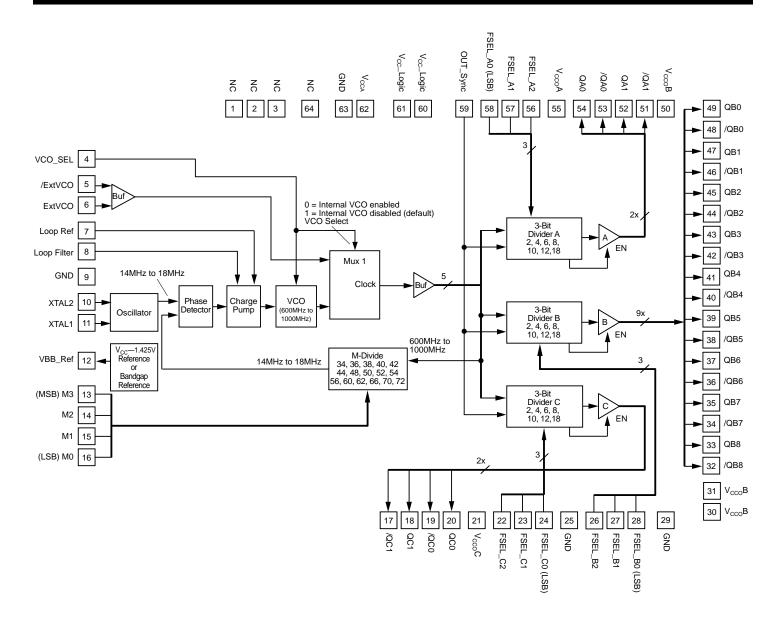
Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{IN}	Xtal Input Frequency Range	Note 8	14	_	18	MHz
f _{OUT}	Output Frequency Range	w/Internal VCO	33.33	_	500	MHz
		w/External VCO	_	_	622.08	MHz
t_{VCO}	Internal VCO Frequency Range		600	_	1000	MHz
	External VCO Frequency		_	_	1250	MHz
t _{skew}	Within Device Skew		_	_	50	ps
Note 9	Within-Bank PECL		<u> </u>	_	50	ps
	Within-Bank HSTL		_	_	75	ps
	Between Banks		<u> </u>	_	150	ps
	Part-to-Part Skew	Note 10	_	_	200	ps
t _{LOCK}	Maximum PLL Lock Time		_	_	10	ms
t _{JITTER}	Cycle-to-Cycle Jitter (Pk-to-Pk)	Note 11	_	25	_	ps
	Period Jitter (RMS)	Note 12	_	_	50	ps
t _{pw} (min)	Minimum Pulse Width		50	_	_	ns
	Target PLL Loop Bandwidth Feedback Divider Ratio: 72 Feedback Divider Ratio: 34	Note 13 Note 13	_	1.0 2.0		MHz MHz
t_{DC}	f _{OUT} Duty Cycle		45	50	55	%
t _r , t _f	Output Rise/Fall Time (20% to 80%)LVPECL_Out HSTL_Out		_ 100	250 —	450 450	ps ps
toutput_reset		Note 14	_	_	10	ns
thold_fsel			5	_	_	ns
t _{SETUP_FSEL}			5	_	_	ns
toutput_syn	ıc		1	_	_	VCO clock cycle
FSEL-to-Val	id Output Transition Time		_	_	1	μs
tsetup_out_sync			500	_	_	ps
Note 9 Fun	damental mode crystal		•	•		


- Note 8. Fundamental mode crystal.
- **Note 9.** The within-device skew is defined as the worst case difference between any two similar delay paths within a single device operating at the same voltage and temperature.
- **Note 10.** The part-to-part skew is defined as the absolute worst case difference between any two delay paths on any two devices operating at the same voltage and temperature.
- Note 11. Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. $T_{JITTER_CC} = T_{n-1}$ where T is the time between rising edges of the output signal.
- Note 12. Period Jitter definition: For a specified amount of time (i.e., 1ms), there are N periods of a signal, and T_n is defined as the average period of that signal. Period jitter is defined as the variation in the period of the output signal for corresponding edges relative to T_n.
- Note 13. Using recommended loop filter components. See "Functional Description, External Loop Filter Considerations."
- Note 14. See "Timing Diagrams."

TIMING DIAGRAMS


Conditions: Internal VCO, unless otherwise stated.

Frequency Programming (Internal VCO Clock)



Frequency Programming (External VCO Clock)

Output Frequency Update to Valid Output

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

At the core of the SY89531L clock synthesizer is a precision PLL driven by 14MHz to 18MHz series resonant crystal. For users who wish to supply a TTL or LVPECL clock input, please use the SY89536L. The PLL output is sent to three banks of outputs. Each bank has its own programmable frequency divider, and the design is optimized to provide very low skew between banks, and very low litter.

PLL Programming and Operation

IMPORTANT: If the internal VCO will be used, VCO_SEL **must** be tied LOW, and ExtVCO pins can be left unconnected.

The internal VCO range is 600MHz to 1000MHz, and the feedback ratio is selectable via the MSEL divider control (M3:0 pins). The VCO_SEL pin must be tied low. The feedback ratio can be changed without powering the chip down. The PLL output is fed to three banks of outputs: Bank A, Bank B, and Bank C. Banks A and C each have two differential LVPECL output pairs. Bank B has nine differential HSTL output pairs.

Each bank has a separate frequency divider circuit that can be reprogrammed on the fly. The FSEL_x0:2 (where x is A, B, or C) pins control the divider value. The FSEL divider can be programmed in ratios from 2 to 18, and the outputs of Banks A, B, and C can be synchronized after programming by pulsing the OUT_SYNC pin HIGH-LOW-HIGH. Setting a value of 000 for FSEL is an output disable forcing the Q outputs to be LOW and the /Q outputs to be HIGH. Doing so will decrease power consumption by approximately 5mA per bank.

To determine the correct settings for the SY89531L follow these steps:

- Refer to the "Suggested Selections for Specific Customer Applications" section for common applications, as well as the formula used to compute the output frequency.
- Determine the desired output frequency, such as 66MHz.
- 3. Choose a crystal frequency between 14MHz and 18MHz. In this example, we choose 18MHz for the crystal frequency. This results in an input/output ratio of 66/18.
- 4. Refer to the "Feedback Divide Select" table and the "Post-Divide Frequency Select" table to find values for MSEL and FSEL such that MSEL/FSEL equals the same 66/18 ratio. In this example, values of MSEL=44 and FSEL=12 work.
- 5. Make sure that XTAL (the crystal frequency) multiplied by MSEL is between 600MHz and 1000MHz.

The user may need to experiment with different crystal frequencies to satisfy these requirements.

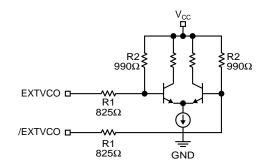
ExtVCO Input Interface

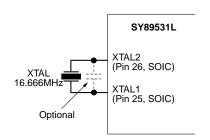
The flexible ExtVCO inputs are designed to accept any differential or single-ended input signal within 300mV above V_{CC} and 300mV below ground.

Do not leave unused ExtVCO inputs floating. Tie either the true or complement inputs to ground, but not both. A logic zero is achieved by connecting the complement input to ground with the true input floating. For a TTL input, see "Input Interface for ExtVCO Pins" section, Figures 5a through 5h.

Input Levels

LVDS, CML and HSTL differential signals may be connected directly to the ExtVCO inputs. Depending on the actual worst case voltage seen, the minimum input voltage swing varies.




Figure 1. Simplified Input Structure

Crystal Input and Oscillator Interface

The SY89531L features a fully integrated on-board oscillator to minimize system implementation costs. The oscillator is a series resonant, multivibrator type design, and thus, a series-resonant crystal is preferred, but not required.

A parallel-resonant crystal can be used with the SY89531L with only a minor error in the desired frequency. A parallelresonant mode crystal used in a series resonant circuit will exhibit a frequency of oscillation a few hundred ppm lower than specified; a few hundred ppm translates to kHz inaccuracies. In a general computer application this level of inaccuracy is immaterial.

As the oscillator is somewhat sensitive to loading on its inputs, the user is advised to mount the crystal as close to the SY89531L as possible to avoid any board level parasitics. In addition, trace lengths should be matched. Figure 2 shows how to interface with a crystal. Table 1 illustrates the crystal specifications. Certain crystals may require a 10pF capacitor across XTAL1 and XTAL2 for proper operation. This is normally not required, but it is recommended that provisions be made for it.

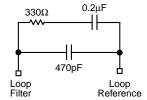
Quartz Crystal Selection:

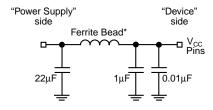
- Raltron Series Resonant: AS-16.666-S-SMD-T-MI
- (1) Raltron Series Resonant: AS-10.000-0-0000 (2) Raltron Parallel Resonant: AS-16.666-18-SMD-T-MI

Figure 2. Crystal Interface

External Loop Filter Considerations

The SY89531L features an external PLL loop filter that allows the user to tailor the PLL's behavior to their application and operating environment. We recommend using ceramic capacitors with NPO or X7R dielectric, as they have verylow effective series resistance. For applications that require ultra-low cycle-to-cycle jitter, use the components shown in Figure 3. The PLL loop bandwidth is a function of feedback divider ratio, and the external loop filter allows the user to compensate. For instance, the PLL's loop bandwidth can be decreased by using a smaller resistor in the loop filter. This results in less noise from the PLL input, but potentially more noise from the VCO. Refer to "AC Electrical" Characteristics" for target PLL loop bandwidth. The designer should take care to keep the loop filter components on the same side of the board and as close as possible to the SY89531L's LOOP_REF and LOOP_FILTER pins. To insure minimal noise pick up on the loop filter, it is desirable to cut away the ground plane directly underneath the loop filter component pads and traces. However, the benefit may not be significant in all applications and one must be careful to not alter the characteristic impedance of nearby traces.




Figure 3. External Loop Filter Connection

Output Frequency: 14MHz-18MHz						
Mode of Oscillation: Fundamental						
	Min	Тур	Max	Unit		
Frequency Tolerance @25°C	_	±30	±50	ppm		
Frequency Stability over 0°C to 70°C	_	±50	±100	ppm		
Operating Temperature Range	-20	_	+70	°C		
Storage Temperature Range	-55	_	+125	°C		
Aging (per yr/first 3 yrs)	_	_	±5	ppm		
Load Capacitance	_	18 (or series)	_	pF		
Equivalent Series Resistance (ESR)		<u> </u>	50	Ω		
Drive Level	_	100	_	μW		

Table 1. Quartz Crystal Oscillator Specifications

Power Supply Filtering Techniques

As with any high-speed integrated circuit, power supply filtering is very important. At a minimum, $V_{CC}A$, $V_{CC}Logic$, and all V_{CCO} pins should be individually connected using a via to the power supply plane, and separate bypass capacitors should be used for each pin. To achieve optimal jitter performance, each power supply pin should use separate instances of the circuit shown in Figure 4.

*For Vcc_Analog,Vcc_TTL, Vcc1, use ferrite bead = 200mA, 0.45Ω DC, Murata P/N BLM21A1025

*For Vcc_out use ferrite bead = 3A, 0.025Ω DC, Murata, P/N BLM31P005

*Component size: 0805

Figure 4. Power Supply Filtering

Output Logic Characteristics

See "Output Termination Recommendations" for illustrations. In cases where single-ended output is desired, the designer should terminate the unused complimentary

output in the same manner as the normal output that is begin used. Unused output pairs can be left floating. Unused output banks can be switched off by tying the appropriate FSEL pins to ground. Unused output pairs that are in a bank that is disabled can be left floating, regardless of output driver type.

LVPECL operation:

- Typical voltage swing is 700mV_{PP} to 800mV_{PP} into 50Ω.
- Common mode voltage is V_{CC}-1.3V, typical.
- 100Ω termination across the output pair is NOT recommended for LVPECL.

HSTL operation (Bank B):

 Typical voltage swing is 250mV_{PP} to 450mV_{PP} into effective 50Ω.

Thermal Considerations

This part has an exposed die pad for enhanced heat dissipation. We strongly recommend soldering the exposed pad to a ground plane. Where this is not possible, we recommend maintaining at least 500lfpm air flow.

For additional information on exposed-pad characteristics and implementation details, see Amkor Technology's write-up at www.amkor.com.

POST-DIVIDE FREQUENCY SELECT TABLE (FSEL)

FSEL_A2 ⁽¹⁾ (MSB)	FSEL_A1 ⁽¹⁾	FSEL_A0 ⁽¹⁾ (LSB)	Output Divider	
0	0	0	Output Disable Function, all outputs: Q = LOW, /Q = HIGH	
0	0	1	VCO ÷ 2	
0	1	0	VCO ÷ 4	
0	1	1	VCO ÷ 6	
1	0	0	VCO ÷ 8	
1	0	1	VCO ÷ 10	
1	1	0	VCO ÷ 12	
1	1	1	VCO ÷ 18	

Note 1. Same dividers apply to FSEL_B (0:2) and FSEL_C (0:2).

FEEDBACK DIVIDE SELECT TABLE (MSEL)

М3	M2	M1	МО	VCO Frequency ⁽¹⁾
0	0	0	0	Ref × 34
0	0	0	1	Ref × 36
0	0	1	0	Ref × 38
0	0	1	1	Ref × 40
0	1	0	0	Ref × 42
0	1	0	1	Ref × 44
0	1	1	0	Ref × 48
0	1	1	1	Ref × 50
1	0	0	0	Ref × 52
1	0	0	1	Ref × 54
1	0	1	0	Ref × 56
1	0	1	1	Ref × 60
1	1	0	0	Ref × 62
1	1	0	1	Ref × 66
1	1	1	0	Ref × 70
1	1	1	1	Ref × 72

Note 1. Ref = Crystal Frequency.

SUGGESTED SELECTIONS FOR SPECIFIC CUSTOMER APPLICATIONS(Notes 1, 2)

Protocol	Rate (MHz)	FSEL (Post Divider)	MSEL (Feedback Div.)	XTAL (MHz)	FOUT
PCI	33	18	36	16.67	33
Fast Ethernet	100	6	40	15	100
1/8 FC	133	6	52	15.36	133
ESCON	200	4	50	16	200

$$FOUT = \frac{(XTAL \times MSEL)}{FSEL}$$

Note 1. 600MHz < (XTAL x MSEL) < 1000MHz.

Note 2. Where two settings provide the user with the identical desired frequency, the setting with the higher input reference frequency (and lower feedback divider) will usually have lower output jitter. However, the reference input frequency, as well as the VCO frequency, must be kept within their respective ranges.

INPUT INTERFACE FOR EXTVCO PINS

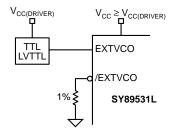


Figure 5a. 3.3V "TTL"

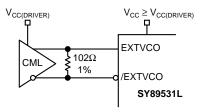


Figure 5b. CML DC-Coupled

Figure 5c. 2.5V "LVTTL"



Figure 5d. 3.3V LVPECL DC-Coupled

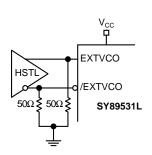


Figure 5e. HSTL

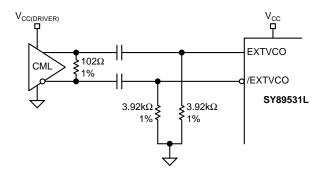


Figure 5f. CML AC-Coupled (Short Trace Lengths)

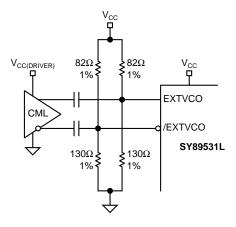


Figure 5g. CML AC-Coupled (Long Trace Lengths)

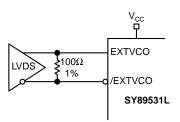


Figure 5h. LVDS

OUTPUT TERMINATION RECOMMENDATIONS

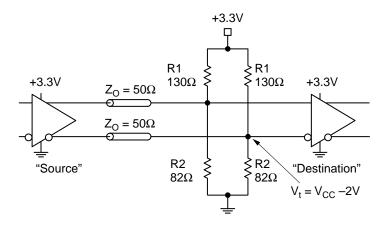


Figure 6. PECL Parallel Termination Thevenin Equivalent (Note 1)

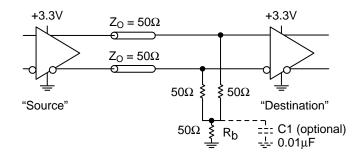


Figure 7. LVPECL Three-Resistor "Y-Termination" (Notes 1, 2, 3)

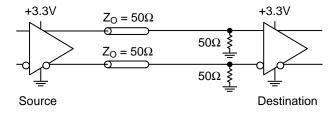
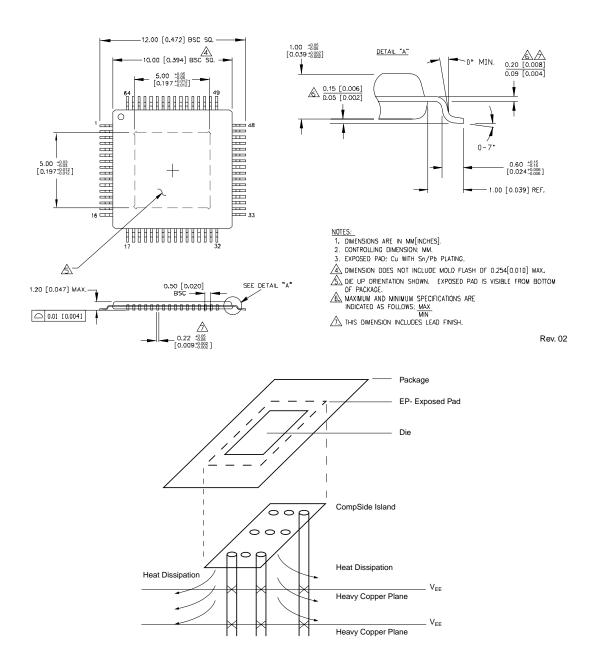



Figure 8. HSTL Differential Termination (Note 1)

- Note 1. Place termination resistors as close to destination inputs as possible.
- Note 2. PECL Y-termination is a power-saving alternative to Thevenin termination.
- Note 3. R_b resistor sets the DC bias voltage, equal to V_t . For +3.3V systems R_b = 46Ω to 50Ω .

64-PIN EPAD-TQFP (DIE UP) (H64-1)

PCB Thermal Consideration for 64-Pin EPAD-TQFP Package

Package Notes:

Note 1. Package meets Level 2 moisture sensitivity classification, and is shipped in dry-pack form.

Note 2. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.