

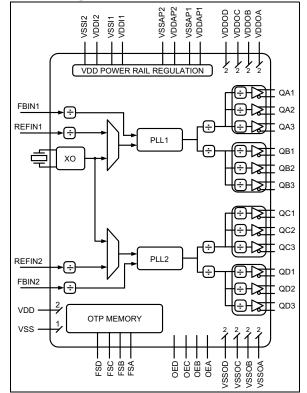
Flexible Ultra-Low Jitter Clock Synthesizer

Features

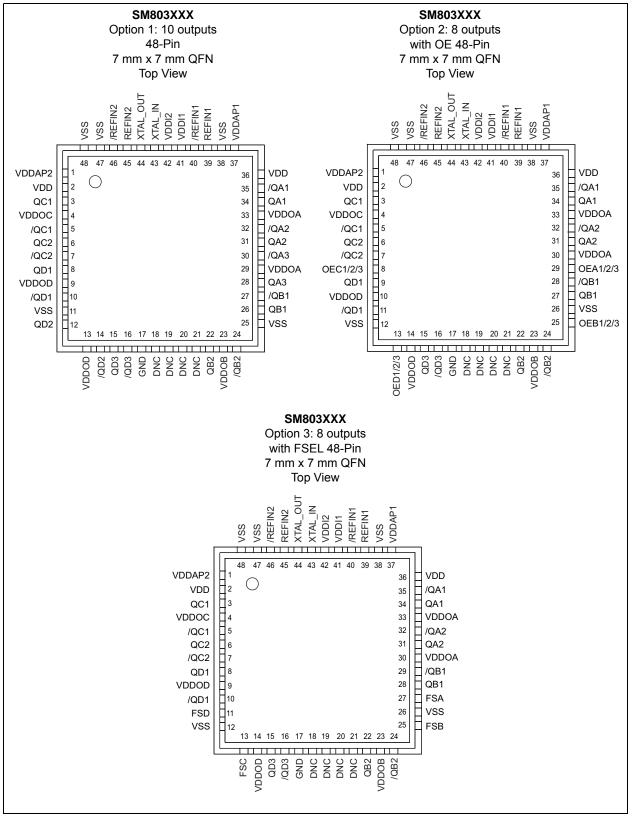
- Generates up to 12 Differential or Single-Ended Outputs: Frequencies up to 850 MHz
- 75 fs Phase Jitter @ 156.25 MHz (1.875 MHz to 20 MHz)
- 180 fs Phase Jitter @ 156.25 MHz (12 kHz to 20 MHz)
- On-Chip Power Supply Regulation for Excellent Power Supply Noise Immunity
- Two High-performance PLL Synthesizers to Generate Multiple Frequencies
- Independently Programmable Output Logic and Frequency:
 - Output Logic: LVPECL, LVDS, HCSL, LVCMOS
- Selectable Input:
 - Crystal: 12 MHz to 62.5 MHz
 - Reference Input: 12 MHz to 850 MHz
- SPI Programmable (See Flex SPI Documentation)
- No External Crystal Oscillator Capacitors Required
- 2.5V to 3.3V Operating Power Supply
- · Separate Output Power Supplies:
 - Each Bank can be at Different Power Supply Voltage Levels (4 Banks of 3 Outputs Each)
- · Feedback Input Pins for use as Zero Delay Buffer
- Industrial Temperature Range, –40°C to +85°C
- Green, RoHS, and PFOS Compliant QFN Packages:
 - 48-pin 7 mm × 7 mm (10 Differential or Single Ended Outputs)
 - 76-pin, 9 mm × 9 mm (12 Differential or Single-Ended Outputs)
 - 84-pin, 7 mm × 7 mm (12 Differential or Single-Ended Outputs)

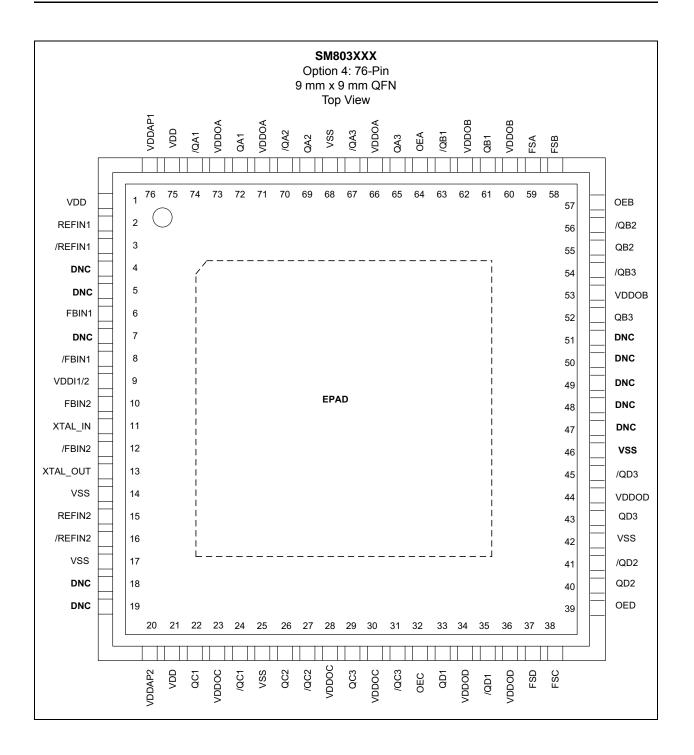
Applications

- 1/10/40/100 Gigabit Ethernet (GbE)
- SONET/SDH
- PCI-Express Gen 1/2/3/4
- · CPRI/OBSAI Wireless Base Station
- Fibre Channel
- SAS/SATA
- DIMM (DDR2/DDR3/AMB)

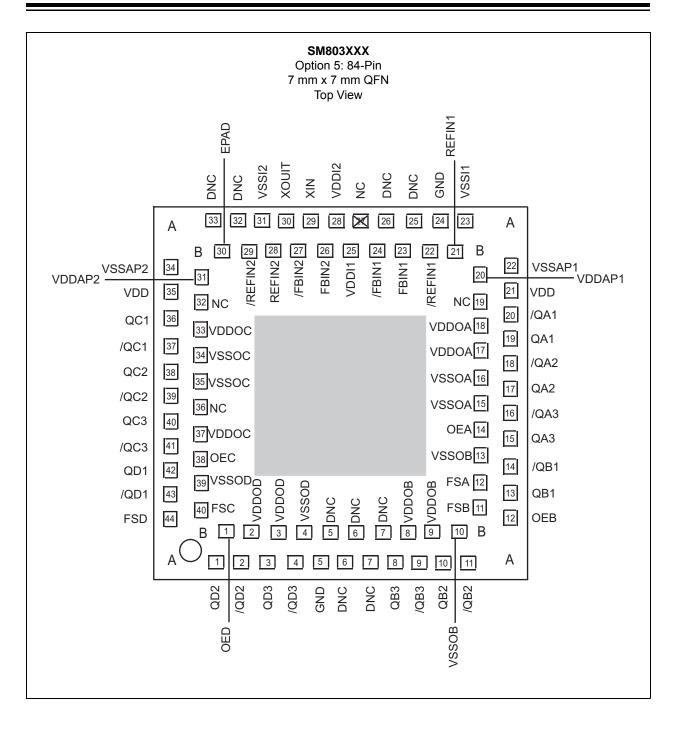

General Description

The SM803xxx is a dual-PLL clock generator that achieves ultra-low phase jitter (75 fs_{RMS}). With 12 total outputs and dividers on each output, this device can generate 12 different frequencies up to 850 MHz, from a low-cost quartz crystal or a reference clock input.


Each of 12 outputs can be independently programmed to LVPECL, LVDS, HCSL, or LVCMOS logic. For LVCMOS, only the true side of the channel is used.


The SM803xxx is packaged in a 48-pin QFN with up to 10 outputs, a 76-pin QFN, or 84-pin QFN with 12 outputs.

Block Diagram



Package Types

© 2018 Microchip Technology Inc.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{DD} , V _{DDA} , V _{DDI} , V _{DDO})	+4.6V
Input Voltage (V _{IN})	
ESD Machine Model	
ESD Human Body Model	2000V

Operating Ratings ††

	• • •	
Supply Voltage (V _{DD}	₎ , V _{DDO})+	-2.375V to +3.465V

† Notice: Exceeding the absolute maximum ratings may damage the device.

†† Notice: The device is not guaranteed to function outside its operating ratings.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, typical values are for $T_A = +25^{\circ}C$. The min. and max. values are for $-40^{\circ}C \le T_A \le +85^{\circ}C$.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
		2.375	2.5	2.625	V	2.5V Operation
Supply Voltage	V _{DD} , V _{DDO}	3.135	3.3	3.465	V	3.3V Operation
Analog Supply Voltage	$V_{DDI1,}V_{DDI2}$	2.375		3.465	V	—
PLL Core Voltage	V _{DDA}	2.375		3.465	V	—
PLL Core Current Consumption	I _{DDA}	_	_	60	mA	Per active PLL
Analog Current Consumption	I _{DDI}	_	_	10	mA	_
Output Stage Current Consumption	I _{DDO}	_	_	70	mA	Per output bank, unloaded
SPI and Miscellaneous Logic	I _{DD}		_	8	mA	—

LVPECL DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DDCore} = V_{DD} = V_{DD0} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. $R_L = 50\Omega$ to $V_{DDO} - 2V$.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Output High Voltage	V _{OH}	V _{DDO} – 1.35	V _{DDO} – 1.01	V _{DDO} – 0.8	V	50Ω to $V_{DDO}-2V$
Output Low Voltage	V _{OL}	V _{DDO} – 2	V _{DDO} – 1.78	V _{DDO} – 1.6	V	50 Ω to $V_{DDO}-2V$
Peak-to-Peak Output Voltage	V _{SWING}	0.65	0.77	0.95	V	Figure 5-3

LVDS DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DDCore} = V_{DD} = V_{DD0} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. $R_L = 100\Omega$ between Q and /Q.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Differential Output Voltage	V _{OD}	245	350	454	mV	Figure 5-3
Common Mode Voltage	V _{CM}	1.125	1.2	1.375	V	_
Output High Voltage	V _{OH}	1.248	1.375	1.602	V	_
Output Low Voltage	V _{OL}	0.898	1.025	1.252	V	—

HCSL DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DDCore} = V_{DD} = V_{DD0} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. $R_L = 50\Omega$ to V_{SS} .

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Output High Voltage	V _{OH}	660	700	850	mV	—
Output Low Voltage	V _{OL}	-150	0	27	mV	—
Crossing Point Voltage	V _{CROSS}		350	—	V	—

LVCMOS DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DDCore} = V_{DD} = V_{DD0} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. $R_L = 50\Omega$ to $V_{DDO}/2$.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Output High Voltage	V _{OH}	V _{DD} – 0.8		—	V	Highest Drive (Default)
Output Low Voltage	V _{OL}	—	_	0.5	V	—
Input High Voltage	V _{IH}	V _{DD} - 0.7	_	V _{DD} + 0.3	V	—
Input Low Voltage	V _{IL}	$V_{SS} - 0.3$	-	$0.3 \times V_{DD}$	V	—
Input High Current	I _{IH}	—	_	5	μA	V _{DD} = V _{IN} = 3.465V
Input Low Current	١ _{IL}	-150		—	μA	V _{DD} = 3.465V, V _{IN} = 0V

REF_IN DC ELECTRICAL CHARACTERISTICS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Input Common Mode Voltage	V _{CMR}	0.3	—	V _{DD} – 0.3	V	_
Input Voltage Swing	V _{SWING}	0.2	—	—	V _{PP}	—

Electrical Characteristics: V_{DD} = 3.3V ±5% to 2.5V ±5%, T_A = -40°C to +85°C.

CRYSTAL CHARACTERISTICS

Parameters	Min.	Тур.	Max.	Units	Conditions
Mode of Oscillation	Fun	idamental, Pa	arallel Reson	ant	12 pF load typical
Frequency	12	-	62.5	MHz	—
Equivalent Series Resistance (ESR)	—	_	60	Ω	-
Load Capacitance, C _L	—	12	±0.5	pF	—
Shunt Capacitor, C0	—	1	2.5	pF	—
Correlation Drive Level	_	10	100	μW	—

^{© 2018} Microchip Technology Inc.

AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Input Fraguanay	C	12	—	62.5	MHz	хо
Input Frequency	F _{IN}	12	—	850	MHz	Reference input
	с	12	—	850	MHz	LVPECL, LVDS, HCSL
Output Frequency	F _{OUT}	12	—	250	MHz	LVCMOS
		85	135	350	ps	LVPECL output
Output Rise/Fall Time	т /т	85	140	300	ps	LVDS output
(Note 1)	T _R /T _F	175	200	400	ps	HCSL output
		100	200	400	ps	LVCMOS output (default drive)
Output Duty Cycle	ODC	45	50	55	%	All output frequencies
		48	50	52	%	< 350 MHz output frequencies
Input to Output	т	-100	—	100	ps	ZDB mode
Propagation Delay	T _{pd}	—	4	_	ns	Synthesizer/Bypass mode
Output-to-Output Skew (Note 2)	T _{SKEW}	—	_	50	ps	Note 3, same output bank
PLL Lock Time	T _{LOCK}	—	5	20	ms	—
RMS Phase Jitter (Note 4, 5)		_	182	_	fo	Integration range (12 kHz - 20 MHz)
	T _{jit} (∅)	_	74	_	fs	Integration range (1.875 MHz - 20 MHz)

Note 1: See Figure 5-4.

2: Output-to-output skew is defined as skew between outputs at the same supply voltage and with equal load conditions. It is measured at the output differential crossing points.

- **3:** Output-to-output skew is only defined for outputs in the same PLL bank [A:B, C:D] with the same output logic type setting.
- 4: All phase noise measurements were taken with an Agilent 5052B phase noise system.
- 5: Measured using a 50 MHz crystal as the input reference source. If using an external reference input, use a low phase noise source. With an external reference, the phase noise will follow the input source phase noise up to about 1 MHz.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions				
Temperature Ranges	Femperature Ranges									
Ambient Temperature Range	T _A	-40		+85	°C	—				
Lead Temperature	—	—	+260	—	°C	Soldering, 20s				
Case Temperature	—	—	+115	—	°C	—				
Storage Temperature Range	Τ _S	-65	—	+150	°C	—				
Package Thermal Resistances						·				
Junction Thermal Resistance, 7 x 7 QFN-84Ld	θ_{JA}	_	23.4	—	°C/W	_				
Junction Thermal Resistance, 7 x 7 QFN Still Air QFN-48Ld	θ_{JA}	_	24.22	—	°C/W	_				
Junction Thermal Resistance, 9 x 9 QFN Still Air QFN-76Ld	θ_{JA}	_	25	—	°C/W	—				

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +85°C rating. Sustained junction temperatures above +85°C can impact the device reliability.

^{© 2018} Microchip Technology Inc.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Numbers by Package Option									
#1 48-pin	#2 48-pin	#3 48-pin	#4 76-pin	#5 84-pin	Pin Name	Pin Type	Pin Level	Pin Function	
34	34	34	72	A19	QA1				
35	35	35	74	A20	/QA1				
31	31	31	69	A17	QA2				
32	32	32	70	A18	/QA2				
28	_	_	65	A15	QA3				
30	_	_	67	A16	/QA3				
26	27	28	61	A13	QB1				
27	28	29	63	A14	/QB1				
22	22	22	55	A10	QB2				
24	24	24	56	A11	/QB2				
_	_	_	52	A8	QB3		LVPECL		
_	_	_	54	A9	/QB3	О,	LVDS	Differential /	
3	3	3	22	A36	QC1	(DIF/SE)	HCSL LVCMOS	SE Clock Output (LVCMOS)	
5	5	5	24	A37	/QC1		(Q only)		
6	6	6	26	A38	QC2		-		
7	7	7	27	A39	/QC2				
_		_	29	A40	QC3				
_	_	_	31	A41	/QC3				
8	9	8	33	A42	QD1				
10	11	10	35	A43	/QD1				
12		_	40	A1	QD2				
14	_	_	41	A2	/QD2				
15	15	15	43	A3	QD3				
16	16	16	45	A4	/QD3				
_		27	59	B12	FSA			Frequency Select	
_		25	58	B11	FSB			Frequency Select, on-chip 75 kΩ pull-up	
_		13	38	B40	FSC	I, (SE)	LVCMOS	1 = Primary Selection	
_		11	37	A44	FSD			0 = Secondary Selection	
2	2	2	1, 21	A21	N/			Device Oversky	
36	36	36	75	A35	V _{DD}	PWR	_	Power Supply	
29	30	29	66, 71	B18		DWD			
33	33	33	73	B17	V _{DDOA}	PWR	-	Power Supply for Outputs QA1–3	
23	23	23	53, 60	B8	N (
_	_	_	62	B9	V _{DDOB}	PWR	-	Power Supply for Outputs QB1–3	
4	4	4	23	B33	M			Device Supply for Outputs OOA 0	
_	—	_	28, 30	B37	V _{DDOC}	PWR	-	Power Supply for Outputs QC1–3	
9	10	9	34	B2	M			Power Supply for Outputs QD1–3	
13	14	14	36, 44	B3	V _{DDOD}	PWR	-		
37	37	37	76	B20	V _{DDAP1}	PWR	_	Power Supply for PLL1	
1	1	1	20	B31	V _{DDAP2}	PWR	—	Power Supply for PLL2	

TABLE	ABLE 2-1: PIN FUNCTION TABLE (CONTINUED)										
Pin Numbers by Package Option											
#1 48-pin	-		#4 #5 76-pin 84-pin		Pin Name	Pin Type	Pin Level	Pin Function			
41	41	41	9	B25	V _{DDI1}	PWR	3.3V only	Power Supply for Input circuits			
42	42	42	9	A28	V _{DDI2}	PWR	3.3V only	Power Supply for Input circuits			
11	12	12	14	A22							
25	26	26	17	A23							
38	38	38	25	A31							
47	47	47	42	A34							
48	48	48	68	B4							
EPAD	EPAD	EPAD	EPAD	B10							
		—	—	B13	V _{SS} (Exposed	PWR		Power Supply Ground. The exposed pad must be connected to the V _{SS}			
_	—	—	—	B15	Pad)			ground plane.			
_	—	—	—	B16							
_	—	—	—	B30							
_	—	—	—	B34							
		—	—	B35							
		—		B39							
		—		EPAD							
_	29	_	64	B14	OEA1/2/3	I, (SE)	LVCMOS	Output Enable, Outputs QA1/2/3 disable to tri-state, 0 = Disabled, $1 = Enabled$, on-chip 75 k Ω pull-up			
_	25	_	57	A12	OEB1/2/3	I, (SE)	LVCMOS	Output Enable, Outputs QB1/2/3 disable to tri-state, 0 = Disabled, 1 = Enabled, on-chip 75 kΩ pull-up			
_	8	_	32	B38	OEC1/2/3	I, (SE)	LVCMOS	Output Enable, Outputs QC1/2/3 disable to tri-state, 0 = Disabled, 1 = Enabled, on-chip 75 k Ω pull-up			
_	13	_	39	B1	OED1/2/3	I, (SE)	LVCMOS	Output Enable, Outputs QD1/2/3 disable to tri-state, 0 = Disabled, 1 = Enabled, on-chip 75kΩ pull-up			
39	39	39	2	B21	REFIN1		LVPECL LVDS	Reference Clock Input 1			
40	40	40	3	B22	/REFIN1	I, (Diff/SE)	HCSL LVCMOS				
45	45	45	15	B28	REFIN2		LVPECL LVDS	Deference Cleak Invite			
46	46	46	16	B29	/REFIN2	I, (Diff/SE)	HCSL LVCMOS	Reference Clock Input2			
			6	B23	FBIN1		LVPECL LVDS	Feedback Clock Input 1 For Zero Delay Buffer function			
_	_	_	8	B24	/FBIN1	I, (Diff/SE)	HCSL LVCMOS				

TABLE 2-1:	PIN FUNCTION TABLE (CONTINUED)
------------	--------------------------------

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Numbers by Package Option									
#1 48-pin	#2 48-pin	#3 48-pin	#4 76-pin	#5 84-pin	Pin Name	Pin Type	Pin Level	Pin Function	
_		_	10	B26	FBIN2	I, (Diff/SE)	LVPECL LVDS	Feedback Clock Input 2	
_	_	_	12	B27	/FBIN2	I, (DIII/SE)	HCSL LVCMOS	For Zero Delay Buffer function	
43	43	43	11	A29	XTAL_IN			Crystal Reference Input, no external load caps needed	
44	44	44	13	A30	XTAL_OUT	JT O, (SE) 12 pF crysta		Crystal Reference Output, no external load caps needed	
—			4	A25		_	_		
			5	A26	DNC			Leave open, do not connect to anything	
		_	7	A32	DINC				
		_	18, 19	A33					
		_		A27			_		
	—	_		B19	NC	_		Leave open or connect to V _{SS} .	
	—			B32				Leave open of connect to v _{SS} .	
	—	—		B36					
18	18	18	47	A6				SPI bus pins for programming.	
19	19	19	48	A7				Leave open; for normal operation, do not connect to anything.	
20	20	20	59	B5	SPI	I/O, (SE)	LVCMOS	See FLEX SPI documentation for	
21	21	21	50	B6				programming features.	
	—	—	51	B7					
17	17	17	46	A5	GND			These pins are not Power Supply grounds but must be tied to V_{SS} for proper operation.	
_		_	_	A24	GND	I			

2.1 Truth Tables

TABLE 2-2:OUTPUT ENABLE

OEA	OEB	OEC	OED	Ουτρυτ		
0	1	1	1	3 QA outputs tri-state		
1	0	1	1	3 QB outputs tri-state		
1	1	0	1	3 QC outputs tri-state		
1	1	1	0	3 QD outputs tri-state		

TABLE 2-3: SWITCHING FREQUENCY

FSA	FSB	FSC	FSD	OUTPUT FREQUENCY
0	1	1	1	3 QA outputs: Secondary output dividers Other outputs: Primary output dividers
1	0	1	1	3 QB outputs: Secondary output dividers Other outputs: Primary output dividers
1	1	0	1	3 QC outputs: Secondary output dividers Other outputs: Primary output dividers
1	1	1	0	3 QD outputs: Secondary output dividers Other outputs: Primary output dividers

3.0 KEY PROGRAMMABLE PARAMETERS

3.1 Frequency Settings for One PLL and One Output Bank

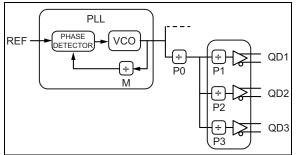


FIGURE 3-1: Frequency Settings for One PLL and One Output Bank.

The REF input frequency can be from a crystal or from a reference clock input. If a crystal is used, the REF input frequency range is 12 MHz to 62.5 MHz.

The VCO in the PLL has a range of 2875 MHz to 3510 MHz.

Counters M and P0 have a range of 4 to 259.

Counters P1, P2 and P3 have a range of 1 to 16.

EQUATION 3-1:

 $F_{VCO} = REF \times M$

EQUATION 3-2:

 $QD1 = F_{VCO} \div (P0 \times P1)$

EQUATION 3-3:

 $QD2 = F_{VCO} \div (P0 \times P2)$

EQUATION 3-4:

 $QD3 = F_{VCO} \div (P0 \times P3)$

3.2 Output Logic Programming

Available output logic types are LVPECL, LVDS, HCSL, and LVCMOS.

Each output can be programmed individually to one of the four logic types.

All logic types are differential except LVCMOS. For LVCMOS, only the true channel of the output pair is enabled and the complementary channel is disabled. With LVCMOS there is also an output drive setting. There is one setting for all LVCMOS outputs, so all LVCMOS outputs will have the same drive strength. Unused outputs are disabled to high impedance.

3.3 Input Selection

The reference input for the PLLs can be programmed to be either a crystal or a reference clock.

The crystal oscillator circuit has capacitors on the IC so external capacitors are not required.

There are two reference clock inputs, one for each PLL. Make sure they are connected to the same reference input source. The reference inputs can be differential or single-ended and require only a small amplitude. See Figure 3-2 and Figure 3-3.

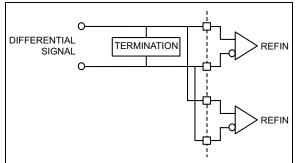


FIGURE 3-2: Differential Signal.

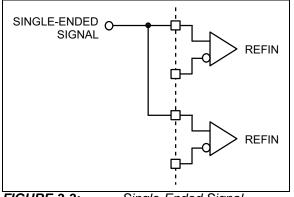


FIGURE 3-3: Single-Ended Signal.

The single-ended signal input can be LVCMOS, but smaller amplitudes like >800 mV_{PP} clipped sine wave from a TCXO will also work.

3.4 Frequency Select Programming

Each of the four output banks has a frequency select pin. For each bank, two P0, P1, P2 and P3 counter values can be programmed, a primary and a secondary value. The frequency select pin toggles between the two values assigned to each counter, changing the output frequencies.

^{© 2018} Microchip Technology Inc.

4.0 APPLICATION INFORMATION

4.1 Input Reference

When operating with a crystal input reference, do not apply a switching signal to REF_IN.

4.2 Crystal Layout

Keep the layers under the crystal as open as possible and do not place switching signals or noisy supplies under the crystal. Crystal load capacitance is built inside the die, so no external capacitance is needed. See the ANTC207 application note for further details.

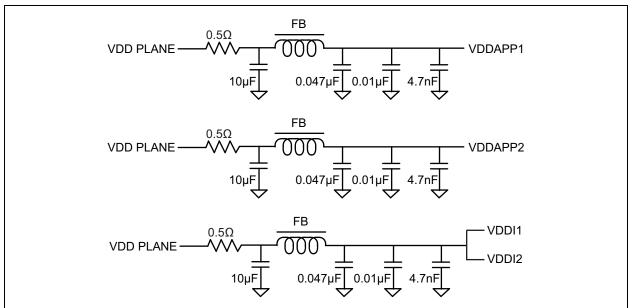
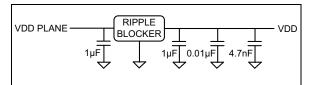
4.3 Output Traces

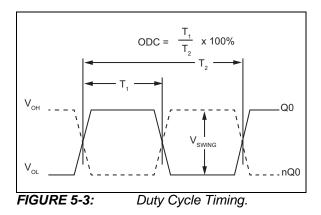
Design the traces for the output signals according to the output logic requirements. If LVCMOS is unterminated, add a 30Ω resistor in series with the output, as close as possible to the output pin and start a 50Ω trace on the other side of the resistor.

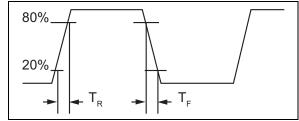
For differential traces you can either use a differential design or two separate 50Ω traces. For EMI reasons, it is better to use a balanced differential design.

LVDS can be AC-coupled or DC-coupled to its termination.

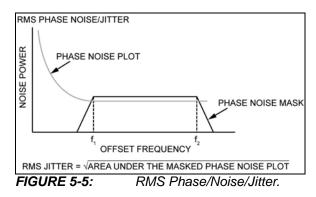
5.0 POWER SUPPLY FILTERING RECOMMENDATIONS


FIGURE 5-1: Recommended Power Supply Filtering.


- Use the power supply filtering shown in Figure 5-1 for V_{DDAP1}, V_{DDAP2}, V_{DDI1} and V_{DDI2}.
- Connect the V_{DDO} and V_{DD} pins directly to the V_{DD} power plane.
- Connect all V_{SS} pins directly to the ground power plane.
- Recommended ferrite bead properties are 80Ω to 240Ω impedance and >250 mA saturation current.
- To improve power supply filtering beyond what a ferrite bead can provide, the Ripple Blocker™ provides a solution. MIC94300 or MIC94310 are recommended parts. The filter circuit with Ripple Blocker is shown in Figure 5-2 and can be used for any of the above V_{DD} sections.

Power Supply Filtering with


FIGURE 5-2: Ripple Blocker.

All Outputs Rise/Fall Time.

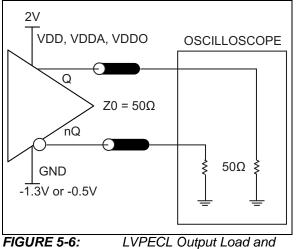


FIGURE 5-6: Test Circuit.

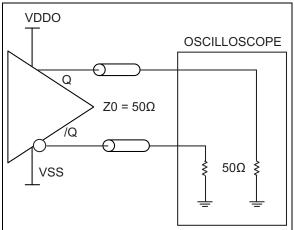
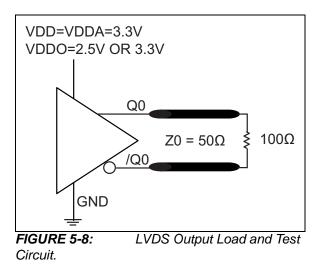



FIGURE 5-7: HCSL Output Load and Test Circuit.

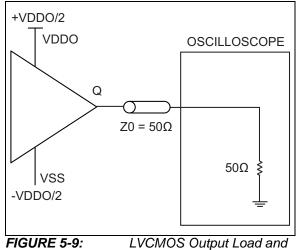


FIGURE 5-9: Test Circuit.

cuit.

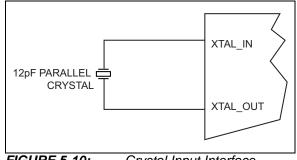


FIGURE 5-10: Crystal Input Interface.

6.0 PHASE NOISE PERFORMANCE

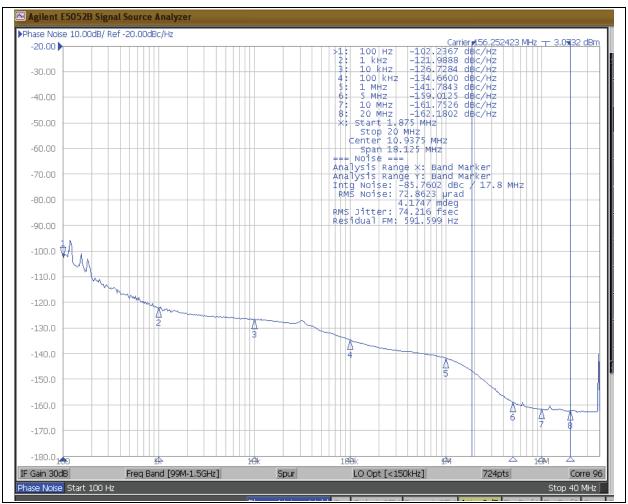


FIGURE 6-1: 156.25 MHz, Integration Range 1.875 MHz to 20 MHz: 74.2 fs_{RMS}.

^{© 2018} Microchip Technology Inc.

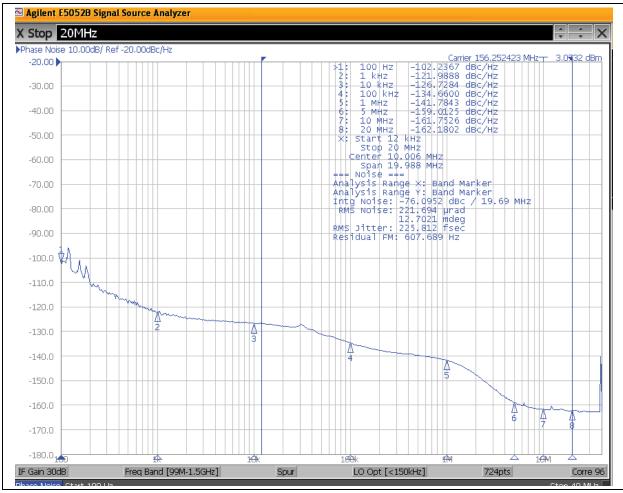
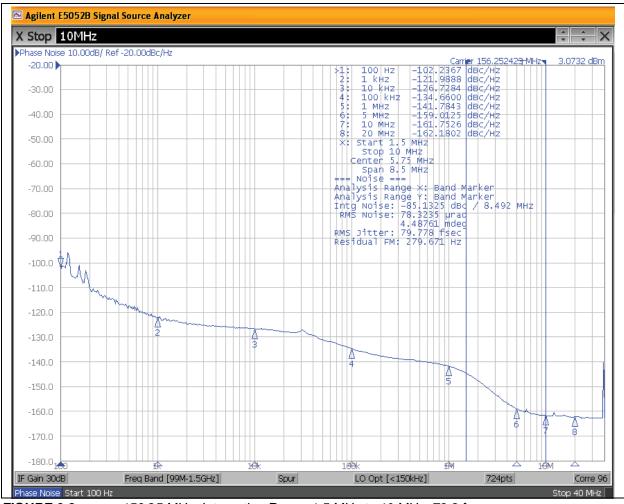
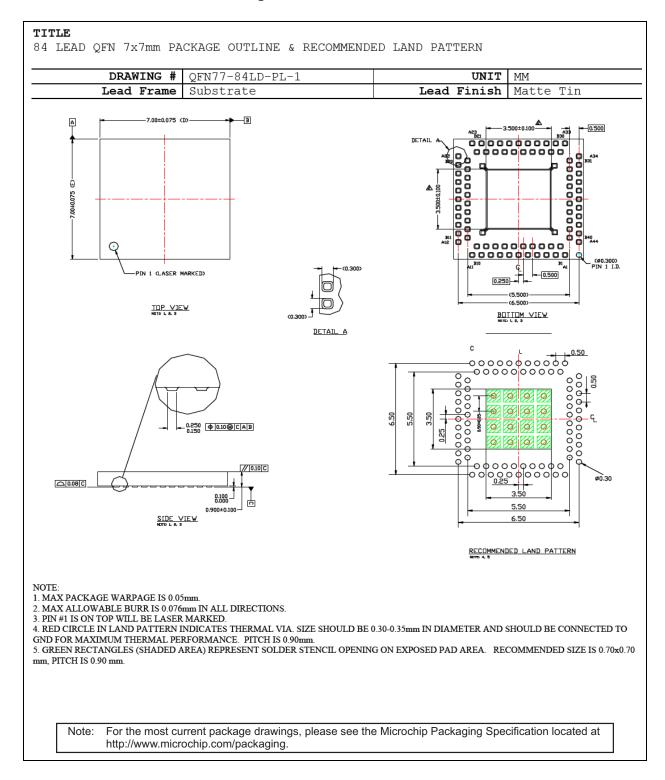
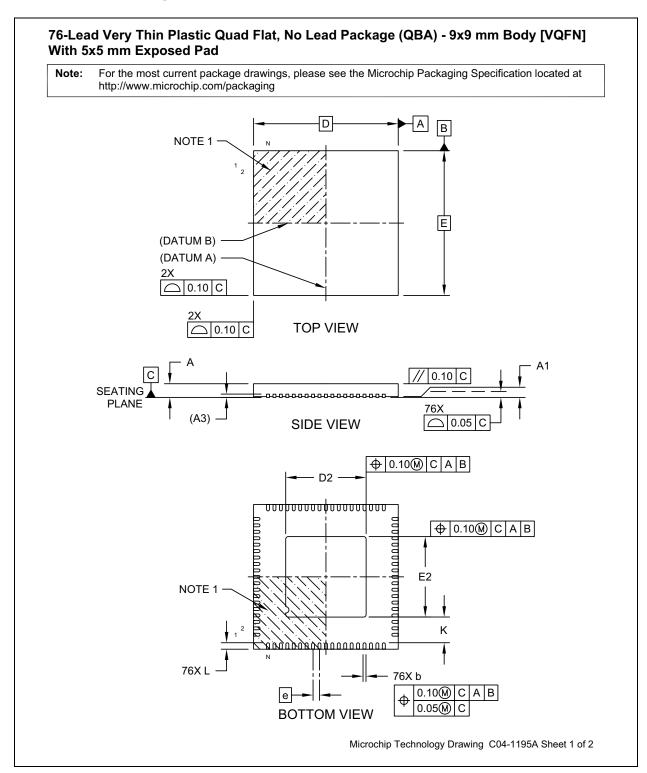
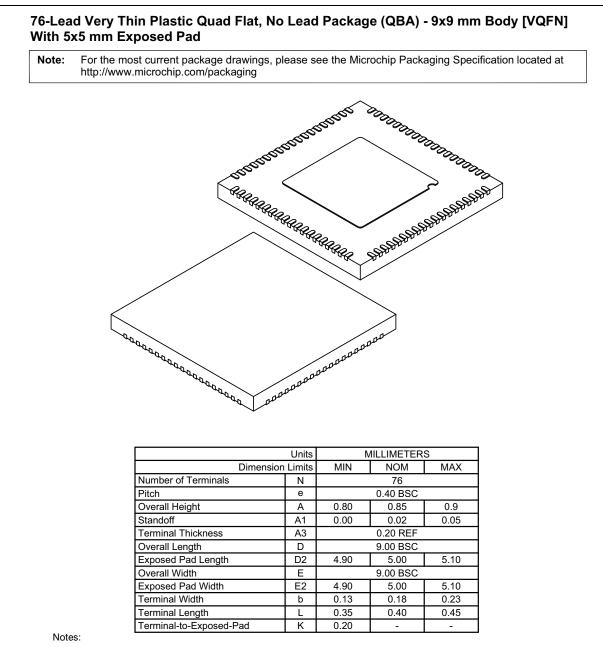


FIGURE 6-2: 156.25 MHz, Integration Range 12 kHz to 20 MHz: 225.8 fs_{RMS}.


FIGURE 6-3: 156.25 MHz, Integration Range 1.5 MHz to 10 MHz: 79.8 fs_{RMS}.

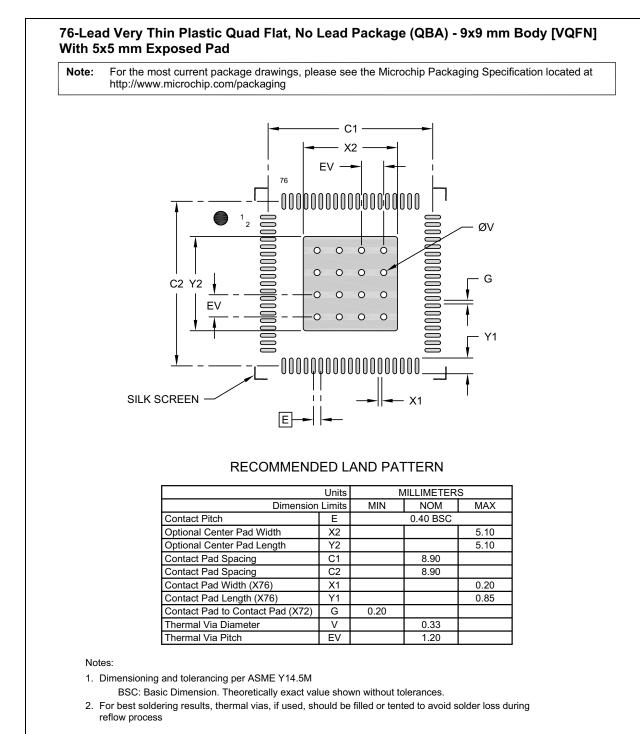
7.0 PACKAGING INFORMATION


84-Lead QFN 7 mm x 7 mm Package Outline and Recommended Land Pattern

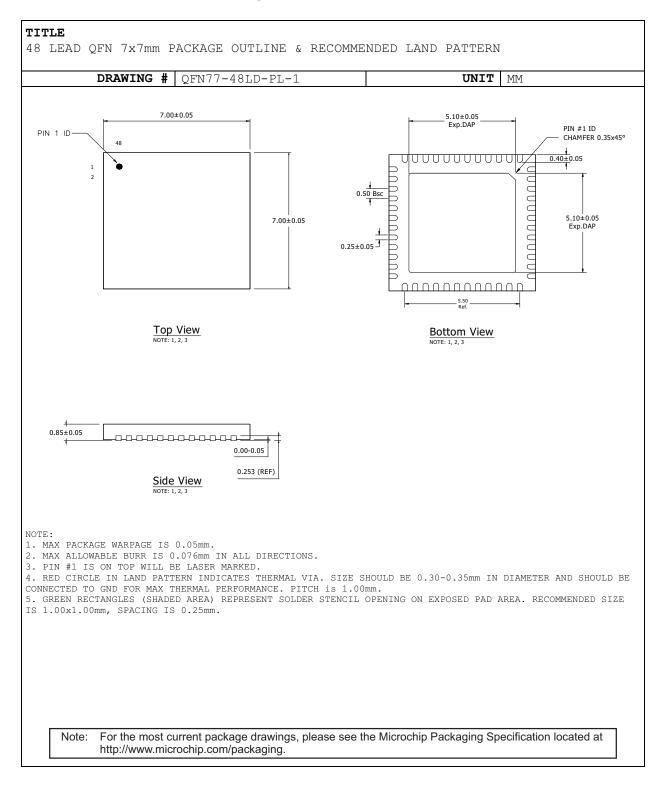
76-Lead VQFN Package Outline and Recommended Land Pattern

^{© 2018} Microchip Technology Inc.

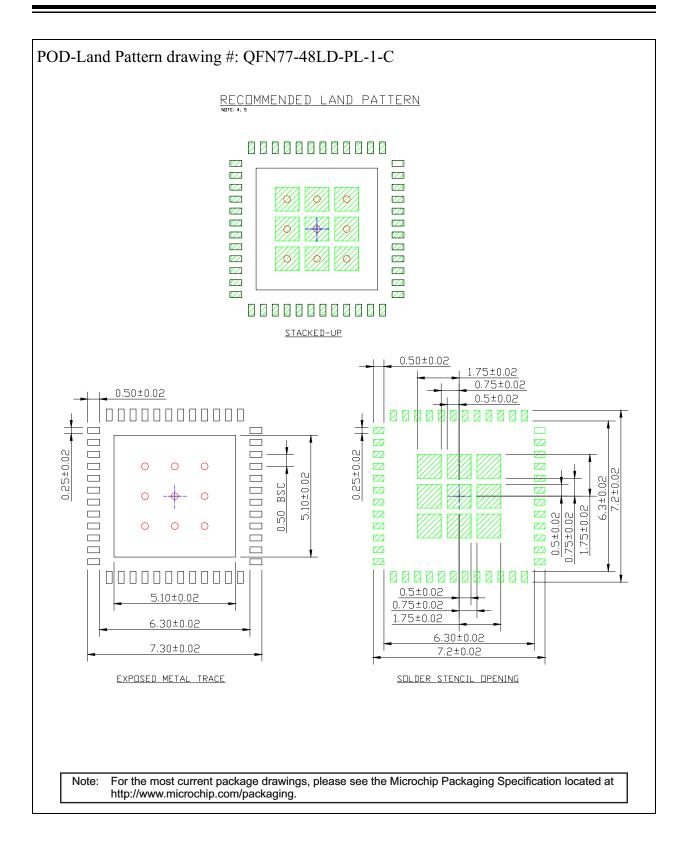
1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-1195A Sheet 2 of 2

Microchip Technology Drawing C04-3195A

48-Lead QFN 7 mm x 7 mm Package Outline and Recommended Land Pattern

^{© 2018} Microchip Technology Inc.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (January 2018)

- Converted Micrel document SM803XXX to Microchip data sheet template DS20005667A.
- Additional 76-Lead VQFN package included in Package Types, Pin Descriptions, and Packaging Information sections.
- Minor grammatical text changes throughout.

^{© 2018} Microchip Technology Inc.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	X		¥	×	X	Exa	imples:	
Device	Voltage Option		ackage Type	Temperature	Special Processing	a)	SM803XXXUMG:	Flexible Ultra-Low Jitter Clock Synthesizer, 2.5/3.3V Voltage, 48-Pin, 76-Pin, or 84-Pin QFN,
Device.	010000	~~~.			K OyntheSizer			–40°C to +85°C (NiPdAu Lead Free), Tray
Voltage Option	n: U	= 2	.5V/3.3V			b)	SM803XXXUMGR:	Flexible Ultra-Low Jitter Clock Synthesizer,
Package Type:	M	= 4	8-Pin QFN, 7	6-Pin QFN, or 84	4-Pin QFN			2.5/3.3V Voltage, 48-Pin, 76-Pin, or 84-Pin QFN,
Temperature:	G Y			C (NiPdAu Lead C (Matte-Sn Lea				–40°C to +85°C (NiPdAu Lead Free), Tape and Reel
Special Processing:	Blank R		Ггау Гаре and Ree	1		c)	SM803XXXUMY:	Flexible Ultra-Low Jitter Clock Synthesizer, 2.5/3.3V Voltage, 48-Pin, 76-Pin, or 84-Pin QFN,
Package Option (Note 1)	QFN Packa	ge	# of Outputs	OE Control	FSEL Control	d)	SM803XXXUMYR:	-40°C to +85°C (Matte- Sn Lead Free), Tray Flexible Ultra-Low Jitter Clock Synthesizer,
1 48	8-pin, 7 mm × ⁻	7 mm	10	No	No			2.5/3.3V Voltage, 48-Pin, 76-Pin, or 84-Pin
2 48	8-pin, 7 mm × 1	7 mm	8	Yes	No			QFN,
3 48	8-pin, 7 mm × 1	7 mm	8	No	Yes			-40°C to +85°C (Matte-
4 76	6-pin, 9 mm × 9	9 mm	12	Yes	Yes			Sn Lead Free), Tape and Reel.
5 84	4-pin, 7 mm × 1	7 mm	12	Yes	Yes			
	lse the web to etermine the o			orks.microchip.c on.	om/timing/ to			
						N	catalog part nur identifier is user is not printed or with your Micror	identifier only appears in the mber description. This d for ordering purposes and n the device package. Check chip Sales Office for package the Tape and Reel option.

^{© 2018} Microchip Technology Inc.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2582-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

DS20005667A-page 32

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

© 2018 Microchip Technology Inc. 10/25/17