


## APT50GS60BRDL(G)

600V, 50A, V<sub>CE(ON)</sub> = 2.8V Typical \*G Denotes RoHS Compliant, Pb Free Terminal Finish.

# Resonant Mode Combi IGBT®



approaching power MOSFET performance but lower cost. An extremely tight parameter distribution combined with a positive V<sub>CE(ON)</sub> temperature coefficient make it

easy to parallel Thunderbolts HS™ IGBT's. Controlled slew rates result in very good noise and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy ruggedness. Combi versions are packaged with a high speed, soft recovery DL series diode.

#### Features

- Fast Switching with low EMI
- Very Low E<sub>OFF</sub> for Maximum Efficiency Easy paralleling
- · Short circuit rated
- · Low Gate Charge
- RoHS Compliant 🥖

- Tight parameter distribution
- Low Forward Diode Voltage (VF)
- Ultrasoft Recovery Diode

**Typical Applications** 

- ZVS Phase Shifted Bridge
- Resonant Mode Switching
- Phase Shifted Bridge
- Welding
- Induction heating
- High Frequency SMPS

| Absolute        | Absolute Maximum Ratings                              |        |      |  |  |  |  |  |
|-----------------|-------------------------------------------------------|--------|------|--|--|--|--|--|
| Symbol          | Parameter                                             | Rating | Unit |  |  |  |  |  |
| I <sub>C1</sub> | Continuous Collector Current $T_C = @ 25^{\circ}C$    | 93     |      |  |  |  |  |  |
| I <sub>C2</sub> | Continuous Collector Current T <sub>C</sub> = @ 100°C | 50     | A    |  |  |  |  |  |
| I <sub>CM</sub> | Pulsed Collector Current ①                            | 195    |      |  |  |  |  |  |
| $V_{GE}$        | Gate-Emitter Voltage                                  | ±30V   | V    |  |  |  |  |  |
| SSOA            | Switching Safe Operating Area                         | 195    |      |  |  |  |  |  |
| t <sub>sc</sub> | Short Circut Withstand Time <sup>③</sup>              | 10     | μs   |  |  |  |  |  |

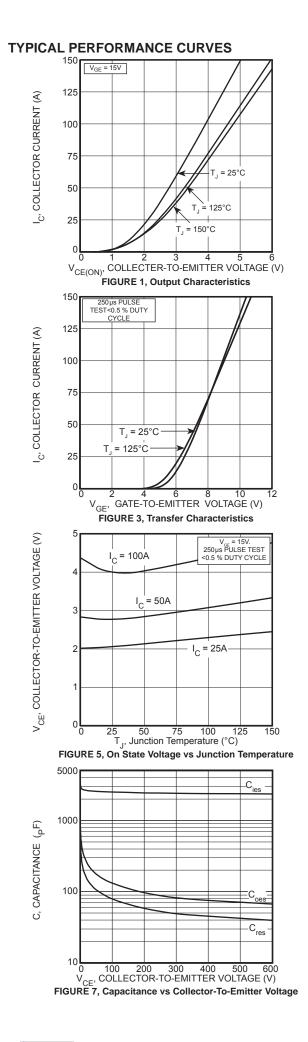
#### Thermal and Mechanical Characteristics

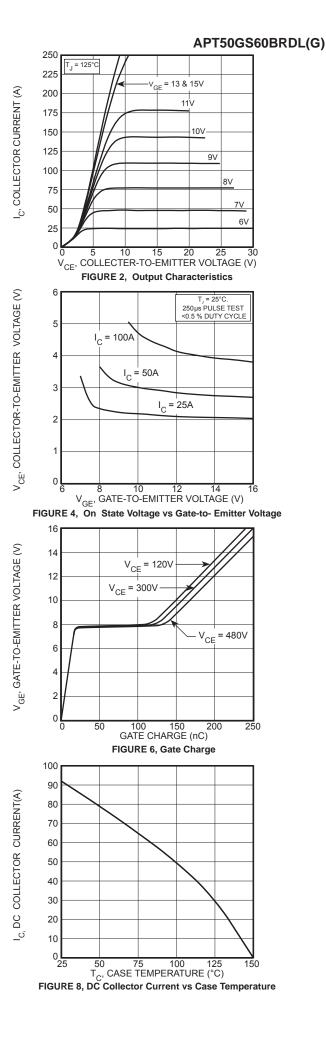
| Symbol                            | Parameter                                              |       | Min | Тур                         | Max  | Unit   |
|-----------------------------------|--------------------------------------------------------|-------|-----|-----------------------------|------|--------|
| P <sub>D</sub>                    | Total Power Dissipation T <sub>C</sub> = @ 25°C        |       | -   | -                           | 415  | W      |
| R <sub>θJC</sub>                  | Junction to Case Thermal Resistance                    | IGBT  | -   | -                           | 0.30 |        |
| '`θJC                             |                                                        | Diode |     |                             | 0.63 | °C/W   |
| R <sub>0CS</sub>                  | Case to Sink Thermal Resistance, Flat Greased Surface  |       | -   | 0.11                        | -    |        |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range       |       | -55 | -                           | 150  | °C     |
| Τ <sub>L</sub>                    | Soldering Temperature for 10 Seconds (1.6mm from case) |       | -   | -                           | 300  |        |
| W <sub>T</sub>                    | Package Weight                                         |       | -   | 0.22                        | -    | oz     |
|                                   |                                                        |       | -   | 5.9                         | -    | g      |
| т                                 | Mounting Torque (TO 247) 6 22 M2 Serous                |       | -   | -<br>-<br>0.11<br>-<br>0.22 | 10   | in∙lbf |
| Torque                            | Mounting Torque (TO-247), 6-32 M3 Screw                |       | -   | -                           | 1.1  | N∙m    |

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed.

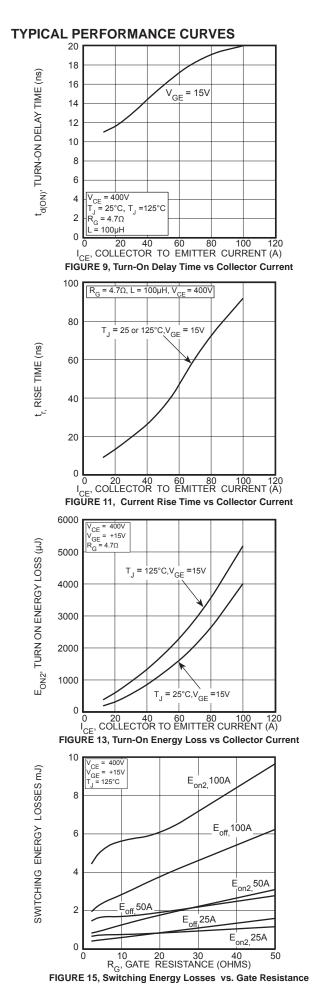
**Static Characteristics** 

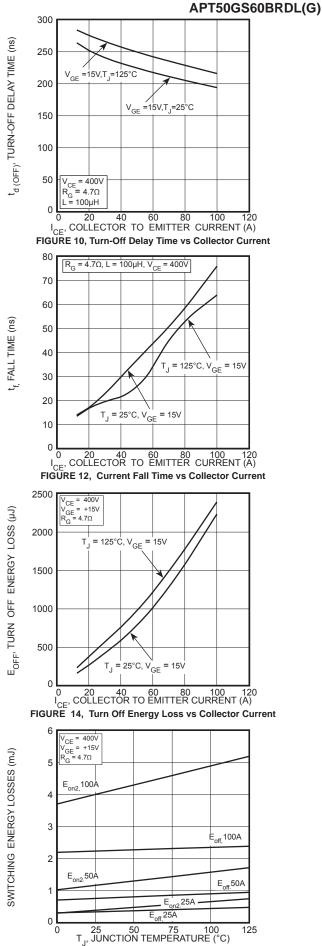
### $T_J = 25^{\circ}C$ unless otherwise specified


APT50GS60BRDL(G)


| Symbol                            | Parameter                                 | Test Conditions                              |                        | Min | Тур  | Max  | Unit  |
|-----------------------------------|-------------------------------------------|----------------------------------------------|------------------------|-----|------|------|-------|
| V <sub>BR(CES)</sub>              | Collector-Emitter Breakdown Voltage       | V <sub>GE</sub> = 0V, I <sub>C</sub> = 250µA |                        | 600 | -    | -    | V     |
| $\Delta V_{BR(CES)} / \Delta T_J$ | Breakdown Voltage Temperature Coeff       | Reference to 25°C, I <sub>C</sub> = 250µA    |                        | -   | 0.60 | -    | V/°C  |
| V                                 | Collector-Emitter On Voltage <sup>④</sup> | V <sub>GE</sub> = 15V                        | T <sub>J</sub> = 25°C  | -   | 2.8  | 3.15 |       |
| V <sub>CE(ON)</sub>               |                                           | $I_{\rm C} = 50$ A                           | T <sub>J</sub> = 125°C | -   | 3.25 | -    | V     |
| V <sub>GE(th)</sub>               | Gate-Emitter Threshold Voltage            | $V_{GE} = V_{CE}, I_C = 1mA$                 |                        | 3   | 4    | 5    |       |
| $\Delta V_{GE(th)} / \Delta T_J$  | Threshold Voltage Temp Coeff              |                                              |                        | -   | 6.7  | -    | mV/°C |
| 1                                 | Zere Cete Veltere Cellecter Current       | t $V_{CE} = 600V,$<br>$V_{GE} = 0V$          | T <sub>J</sub> = 25°C  | -   | -    | 50   |       |
| CES                               | Zero Gate Voltage Collector Current       | V <sub>GE</sub> = 0V                         | T <sub>J</sub> = 125°C | -   | -    | 1000 | μA    |
| I <sub>GES</sub>                  | Gate-Emitter Leakage Current              | $V_{GE} = \pm 20V$                           |                        | -   | -    | ±100 | nA    |

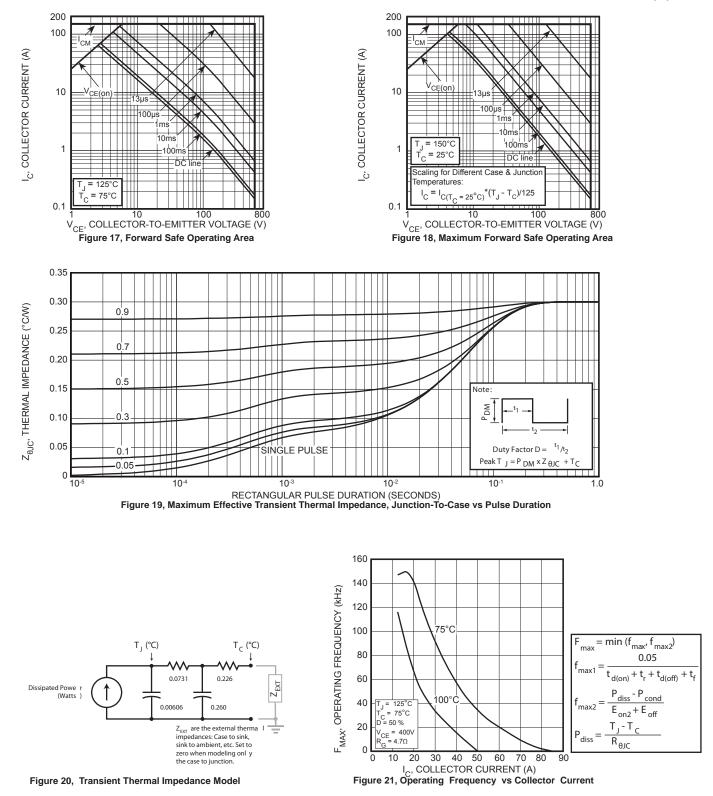
#### **Dynamic Characteristics**


T<sub>J</sub> = 25°C unless otherwise specified

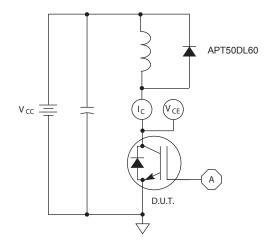

| Symbol              | Parameter                                                     | Test Conditions                                                                            | Min | Тур   | Max | Unit |
|---------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|-------|-----|------|
| 9 <sub>fs</sub>     | Forward Transconductance                                      | V <sub>CE</sub> = 50V, I <sub>C</sub> = 50A                                                | -   | 31    | -   | S    |
| C <sub>ies</sub>    | Input Capacitance                                             |                                                                                            | -   | 2635  | -   |      |
| C <sub>oes</sub>    | Output Capacitance                                            | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 25V<br>f = 1MHz                                    | -   | 240   | -   |      |
| C <sub>res</sub>    | Reverse Transfer Capacitance                                  |                                                                                            | -   | 145   | -   | pF   |
| C <sub>o(cr)</sub>  | Reverse Transfer Capacitance<br>Charge Related <sup>(5)</sup> | V <sub>GE</sub> = 0V                                                                       | -   | 115   | -   |      |
| C <sub>o(er)</sub>  | Reverse Transfer Capacitance<br>Current Related <sup>6</sup>  | $V_{GE} = 0V$ $V_{CE} = 0 \text{ to } 400V$                                                |     | 85    |     |      |
| Qg                  | Total Gate Charge                                             |                                                                                            | -   | 235   | -   |      |
| Q <sub>ge</sub>     | Gate-Emitter Charge                                           | $V_{GE} = 0 \text{ to } 15V$<br>$I_C = 50A, V_{CE} = 300V$                                 | -   | 18    | -   | nC   |
| G <sub>gc</sub>     | Gate-Collector Charge                                         | $_{\rm C} = 50$ A, $v_{\rm CE} = 500$ V                                                    | -   | 100   | -   |      |
| t <sub>d(on)</sub>  | Turn-On Delay Time                                            |                                                                                            | -   | 16    | -   |      |
| t <sub>r</sub>      | Rise Time                                                     | Inductive Switching IGBT and                                                               | -   | 33    | -   |      |
| t <sub>d(off)</sub> | Turn-Off Delay Time                                           | Diode:                                                                                     | -   | 225   | -   | ns   |
| t <sub>f</sub>      | Fall Time                                                     | T = 25°C, V <sub>CC</sub> = 400V,                                                          | -   | 37    | -   |      |
| E <sub>on1</sub>    | Turn-On Switching Energy <sup>®</sup>                         | $I_{\rm C} = 50A$                                                                          | -   | TBD   | -   |      |
| E <sub>on2</sub>    | Turn-On Switching Energy <sup>(9)</sup>                       | $I_{c} = 50A$<br>$R_{G} = 4.7\Omega^{(2)}, V_{GG} = 15V$                                   | -   | 1.2   | -   | mJ   |
| E <sub>off</sub>    | Turn-Off Switching Energy 10                                  |                                                                                            | -   | 0.755 | -   |      |
| t <sub>d(on)</sub>  | Turn-On Delay Time                                            |                                                                                            | -   | 33    | -   |      |
| t <sub>r</sub>      | Rise Time                                                     | Inductive Switching IGBT and                                                               | -   | 33    | -   |      |
| t <sub>d(off)</sub> | Turn-Off Delay Time                                           | Diode:                                                                                     | -   | 250   | -   | ns   |
| t <sub>f</sub>      | Fall Time                                                     | T <sub>J</sub> = 125°C, V <sub>CC</sub> = 400V,                                            | -   | 23    | -   |      |
| E <sub>on1</sub>    | Turn-On Switching Energy <sup>®</sup>                         | $T_{J} = 125^{\circ}C, V_{CC} = 400V,$ $I_{C} = 50A$ $R_{G} = 4.7\Omega^{7}, V_{GG} = 15V$ | -   | TBD   | -   |      |
| E <sub>on2</sub>    | Turn-On Switching Energy <sup>(9)</sup>                       | $R_{G} = 4.7 \Omega^{-3}, V_{GG} = 15V$                                                    | -   | 1.7   | -   | mJ   |
| E <sub>off</sub>    | Turn-Off Switching Energy 10                                  |                                                                                            | -   | 0.950 | -   |      |






# 052-6352 Rev C 3-2012






#### **TYPICAL PERFORMANCE CURVES**

#### APT50GS60BRDL(G)



#### APT50GS60BRDL(G)



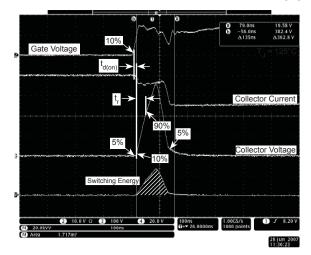



Figure 23, Turn-on Switching Waveforms and Definitions

Figure 22, Inductive Switching Test Circuit

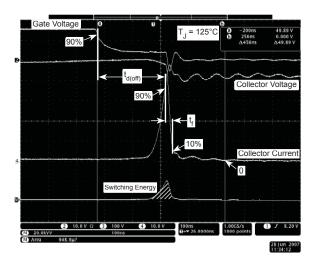



Figure 24, Turn-off Switching Waveforms and Definitions

#### FOOT NOTE:

- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- (3) Short circuit time:  $V_{GE} = 15V$ ,  $V_{CC} \le 600V$ ,  $T_{J} \le 150^{\circ}C$
- (4) Pulse test: Pulse width < 380µs, duty cycle < 2%
- (5) C<sub>o(cr)</sub> is defined as a fixed capacitance with the same stored charge as C<sub>oes</sub> with V<sub>CE</sub> = 67% of V<sub>(BR)CES</sub>.

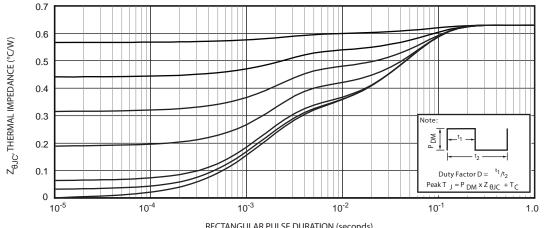
 $\tilde{6}$   $C_{o(er)}^{(o(f))}$  is defined as a fixed capacitance with the same stored energy as  $C_{oes}^{(o(er))}$  with  $V_{CE}^{(o(er))} = 67\%$  of  $V_{(BR)CES}^{(o(er))}$ . To calculate  $C_{o(er)}$  for any value of  $\mathbb{Q}_{CE}$  less than V<sub>(BR)CES</sub>, use this equation: C<sub>o(er)</sub> = 5.57E-8/V<sub>DS</sub><sup>2</sup> + 7.15E-8/V<sub>DS</sub> + 2.75E-10. 7 R<sub>G</sub> is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452).

- (8) E<sub>an1</sub> is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode.
- 9 E<sub>on2</sub> is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy.
- 0 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
  - Microsemi reserves the right to change, without notice, the specifications and information contained herein.

## **ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE**

#### **MAXIMUM RATINGS**

All Ratings:  $T_{C} = 25^{\circ}C$  unless otherwise specified.


| Symbol               | Characteristic / Test Conditions                                           | APT50GS60BRDL(G) |     | UNIT |      |
|----------------------|----------------------------------------------------------------------------|------------------|-----|------|------|
| I <sub>F</sub> (AV)  | Maximum Average Forward Current (T <sub>C</sub> = 124°C, Duty Cycle = 0.5) |                  | 50  |      |      |
| I <sub>F</sub> (RMS) | RMS Forward Current (Square wave, 50% duty)                                |                  | 150 |      | Amps |
| I <sub>FSM</sub>     | Non-Repetitive Forward Surge Current $(T_J = 45^{\circ}C, 8.3ms)$          |                  | 320 |      |      |

#### STATIC ELECTRICAL CHARACTERISTICS

| Symbol         | Characteristic / Test Conditions |                                              | MIN | ТҮР  | MAX | UNIT  |
|----------------|----------------------------------|----------------------------------------------|-----|------|-----|-------|
|                |                                  | I <sub>F</sub> = 50A                         |     | 1.25 | 1.6 |       |
| V <sub>F</sub> | Forward Voltage                  | I <sub>F</sub> = 100A                        |     | 2.0  |     | Volts |
|                |                                  | Ι <sub>F</sub> = 50A, Τ <sub>J</sub> = 125°C |     | 1.25 |     |       |

#### **DYNAMIC CHARACTERISTICS**

| Symbol           | Characteristic                                 | Test Conditions                                                                                        | MIN | TYP  | MAX | UNIT |
|------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| t <sub>rr</sub>  | Reverse Recovery Time $I_F = 1A$ , $di_F/dt =$ | = -100A/µs, V <sub>R</sub> = 30V, T <sub>J</sub> = 25°C                                                | -   | 52   |     |      |
| t <sub>rr</sub>  | Reverse Recovery Time                          | I <sub>F</sub> = 50A, di <sub>F</sub> /dt = -200A/μs<br>V <sub>R</sub> = 400V, T <sub>C</sub> = 25°C   | -   | 399  |     | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge                        |                                                                                                        | -   | 1498 |     | nC   |
| I <sub>RRM</sub> | Maximum Reverse Recovery Current               |                                                                                                        | -   | 9    | -   | Amps |
| t <sub>rr</sub>  | Reverse Recovery Time                          | I <sub>F</sub> =50A, di <sub>F</sub> /dt = -200A/µs<br>V <sub>R</sub> = 400V, T <sub>C</sub> = 125°C   | -   | 649  |     | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge                        |                                                                                                        | -   | 3734 |     | nC   |
| I <sub>RRM</sub> | Maximum Reverse Recovery Current               |                                                                                                        | -   | 13   | -   | Amps |
| t <sub>rr</sub>  | Reverse Recovery Time                          |                                                                                                        | -   | 284  |     | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge                        | I <sub>F</sub> = 50A, di <sub>F</sub> /dt = -1000A/µs<br>V <sub>R</sub> = 400V, T <sub>C</sub> = 125°C | -   | 5134 |     | nC   |
| I <sub>RRM</sub> | Maximum Reverse Recovery Current               |                                                                                                        | -   | 34   |     | Amps |





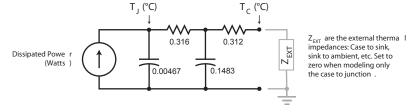
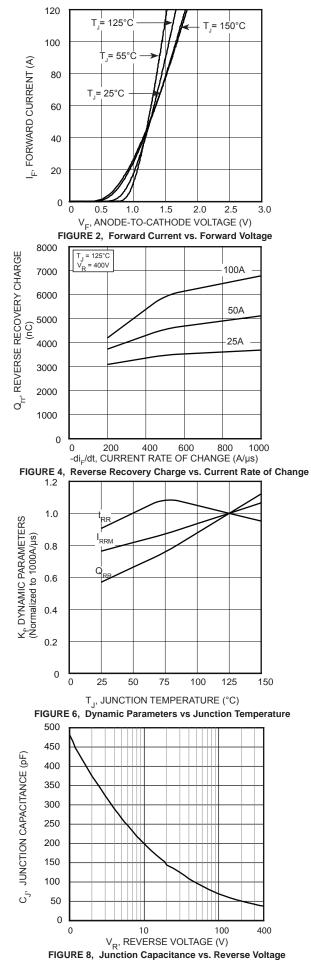
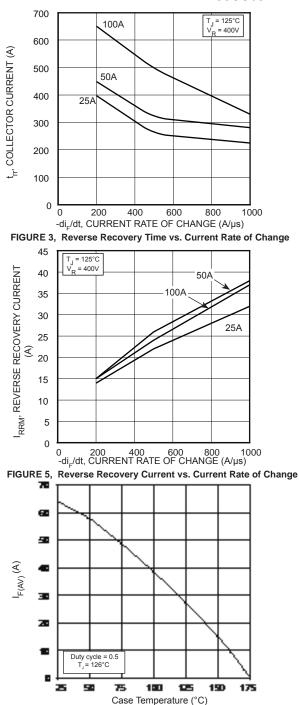




FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

#### **TYPICAL PERFORMANCE CURVES**

#### APT50GS60BRDL(G)





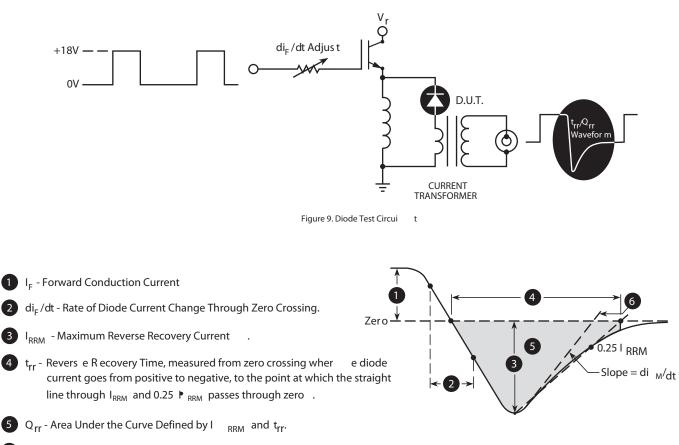
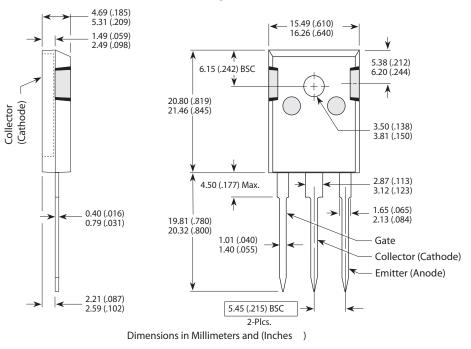



FIGURE 7, Maximum Average Forward Current vs. Case Temperature






6 di<sub>M</sub>/dt - Maximum Rate of Current Increase During the Trailing Portion of t rr.

Figure 10, Diode Reverse Recovery Waveform and Definition

s



#### TO-247 (B) Package Outline