

12 Ports Power Over Ethernet Manager

DATASHEET

PD69012 Auto Mode features:

classification

configuration

I²C Host interface

Direct LED drive

۲

٠

٠

٠

٠

٠

۲

٠

٠

٠

٠

٠

٠

٠

٠

٠

٠

٠

٠

٠

٠

Fully IEEE802.3af-2003 compliant

Supports pre-standard PD detection

Supports Cisco devices detection

Single DC voltage input (44v-57v)

independent 4-pairs ports

Supports Interrupt out pin

Dynamic power management

configurable Power Bank I/Os

Direct register communication

Power soft start algorithm

Thermal monitoring/protection

Voltage monitoring/protection

KEY FEATURES

Designed to support IEEE802.3at including two-event

IETF Power Ethernet MIB (RFC 3621) compliant

Wide temperature range: -40° C to +85° C

Low thermal dissipation (0.5Ω sense resistor)

Can cascade up to 8 PoE devices (96 ports)

Drives 12 independent two-pairs power ports or 6

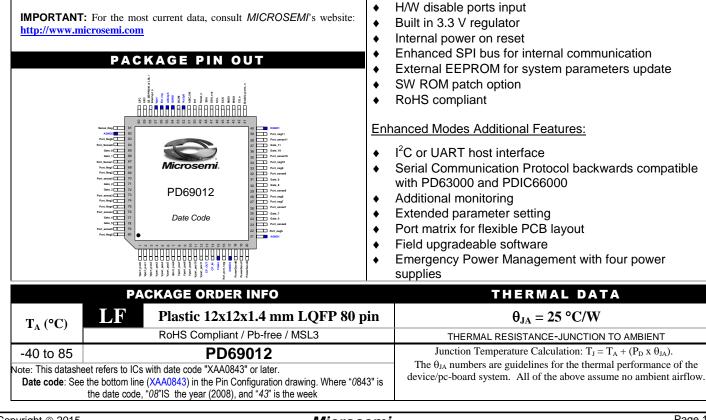
Emergency power management supporting three

Continuous monitoring per port and system data

Parameter setting per port and per system

EEPROM interface for software patching and parameter

Microsemi's PD69012 Power over Ethernet (PoE) Manager chip integrates power, analog and State of the art Embedded Core Logic into a single 80-pin, plastic QFP package. The device is used in Ethernet switches and Midspans to allow network devices to share power and data over the same cable.


DESCRIPTION

PD69012 device is a 12-port, mixed-signal, high-voltage Power over Ethernet driver. It allows detection of IEEE802.3af-2003 compliant PDs (Powered Devices) and IEEE802.3AT High Power Devices, thus, ensuring safe power feeding and disconnection of ports. With full digital control via a serial communication interface and a minimum of external components, the device integrates into multi-port and highly populated Ethernet switches and routers.

The PD69012 executes all real time functions as specified in the IEEE802.3af-2003 ("AF") standard and IEEE802.3at High Power ("AT") functionality, including: Load detection, "AF" and "AT" classification and port status monitoring, as well as system level activities such as: power management and MIB support for system management. The PoE device is designed to detect and disable disconnected ports, utilizing both DC and AC disconnection methods, as specified in the IEEE 802.3af-2003 standard.

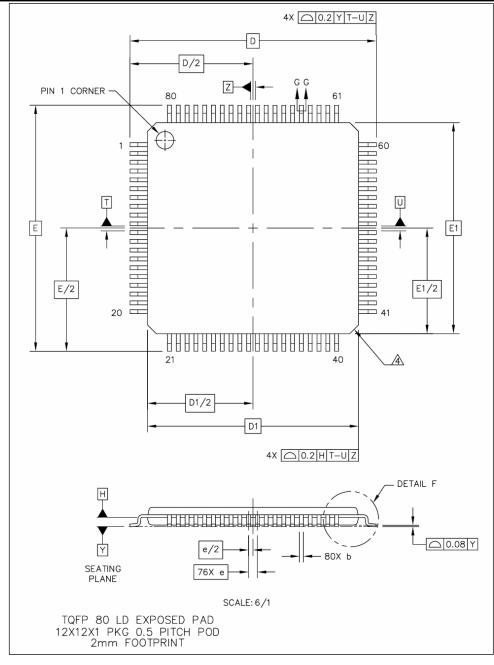
The PD69012 is designed to support 2 main configurations:

- Auto mode: For Basic "AF" and "AT" PSE equipment .
- Enhanced mode: For High End, Extended features set of AF and AT PSE equipment.

Copyright © 2015 Rev. 1.11, 22 October 2015

Microsemi CPG - PoE BU

Page 1


COMPANY CONFIDENTIAL

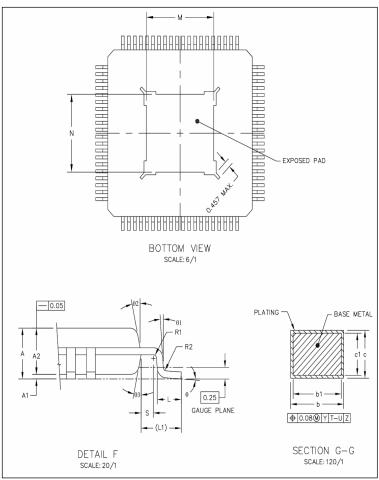
PD69012

12 Ports Power Over Ethernet Manager

DATASHEET

PACKAGE INFORMATION

Page 2


Downloaded from Arrow.com.

12 Ports Power Over Ethernet Manager

DATASHEET

NOTES:

- 1. DATUMS T, U AND Z TO BE DETERMINED WHERE THE LEADS EXIT THE PLASTIC BODY AT DATUM PLANE H.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE. DIMENSIONS D AND E ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 3. DIMENSION & DOES NOT INCLUDE DAM BAR PROTRUSION. ALLOWABLE DAM BAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THAN 0.08mm. DAM BAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN A PROTRUSION AND AN ADJACENT LEAD IS 0.07mm.

4	EXACT	SHAPE	OF	EACH	CORNER	IS	OPTION.	
---	-------	-------	----	------	--------	----	---------	--

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	
Α			1.2	L1		1 REF		1
A1	0.05		0.15	R1	0.08			
A2	0.95	1	1.05	R2	0.08		0.2	
b	0.17	0.22	0.27	S	0.2			
b1	0.17	0.2	0.23	θ	0*		7*	
с	0.09		0.2	01	0.			
c1	0.09		0.16	02	11*		13*	
D		14 BSC		03	11*		13*	
D1		12 BSC		м	5.5	5.6	5.7	
e		0.5 BSC		N	5.5	5.6	5.7	
E		14 BSC						
E1		12 BSC					MENSION	
L	0.45	0.6	0.75		UNIT		TOLERANCI	
					MM		ASME Y14.	5

Figure 1: PD69012 Package Description

Downloaded from Arrow.com.

PD69012

12 Ports Power Over Ethernet Manager

DATASHEET

	MAIN FEATURES DESCRIPTION							
Feature	Description							
IEEE802.3af-2003 and IEEE802.3at Compliant	PD69012 Auto Mode Features The PD69012 meets all IEEE-802.3AF-2003 standard requirements and all IEEE802.3at draft requirements, such as: • Multi – point resistor detection • AF and AT PD classification function including 2-events • AC disconnect and DC disconnect functions • Supports Back-off feature for Midspan implementation							
IETF Power Ethernet	The PD69012 meets all IETF power Ethernet MIB (RFC 3621) requirements such as: port							
MIB (RFC 3621) Compliant	enable/disable, port priority, classification, error counters and system/port power consumption.							
Single DC Voltage Input	The PD69012 requires a single DC voltage source: 44V to 57V. No additional voltage sources (e.g. 3.3V/5V) are required for the PoE system's operation.							
	The PD69012 can operate in a very wide temperature range: -40°c to +85°c.							
Wide temperature range: -40°c to +85°c	This wide temperature range enables to integrate the PD69012 into small unventilated boxes and be used in harsh environments.							
Low power dissipation (0.5Ω sense resistor and <0.2Ω FET)	The PD69012 has an exposed pad which keeps the device in low temperatures. The Rsense in PD69012 applications is only 0.5Ω , and the external FET can be selected to be less than 0.2Ω reducing power dissipation and allowing for fan-less operation							
Drives 12 Independent Power Ports								
External Power FET Per PortThe PD69012 is designed to drive 12 external Power FET in order to implement flexible power solution and simplify circuit design, allowing the customer to fit the FET to the temperature and current requirements of the application								
Can be Cascaded for up to 8 PoE Devices	PD69012 PoE devices can be cascaded for up to 96 ports PoE system, utilizing 8 PoE devices that fit into an Auto Mode Master/Slave configuration.							
I ² C Communication for Internal Interface	Allows communication between the Host CPU and the PoE devices for monitoring and setting.							
Power Management	When working in either Auto Mode or Enhanced Mode the system supports the following power management modes: Class mode, Allocation mode, Dynamic and Auto-PM mode that combines all modes. The power management feature is a continuous real-time algorithm utilized to protect against over-power consumption. Disconnection and connection of ports is performed as specified in the power management mode.							
Emergency Power Management	Three power supply indication inputs for quick shut down of ports according to pre-defined priority table in cases where power supply failure occurs. Four power supplies are supported in Enhanced Mode							
Direct Register Communication	The Host CPU communicates with the PoE devices by writing and reading to/from their registers.							
Continuous Monitoring per Port	The Host CPU can receive on-line information per port such as: Port current and power measurement							

Copyright © 2015 Rev. 1.11, 22 October 2015 PD69012

12 Ports Power Over Ethernet Manager

DATASHEET

	On-line system telemetries for the Host CPU, such as:						
Continuous System	Voltage measurement						
data	Total system and per port power consumption						
	System and ICs status						
	Configurable parameters via the Host CPU, such as:						
	Port priority						
Parameter Setting per Port and Per System	Power management parameters (power limit, PM mode)						
For and Fer System	Forced power and disable power per port						
	AC/DC disconnect method						
	The PD69012 comprises internal thermal protection, to protect against junction overheating;						
Thermal Monitoring/Protection	two temperature sensors are integrated into the device, and are utilized for protection and for						
Monitoring/Protection	temperature monitoring.						
	The PD69012 utilizes a dedicated pin (#41), enabling an immediate disconnection of all ports.						
H/W Disable Ports	This disable-ports pin can be controlled via the Host CPU. All ports are disconnected when						
	voltage level on this pin drops. This is the quickest way to turn-off all ports.						
Built In 2 2V Begulator	The PD69012 combined with a few additional components can provide 3.3V up to 30mA for						
Built-In 3.3V Regulator	other components, such as PoE Controller and optical devices.						
	The Power On Reset circuitry monitors the internal voltage regulators (2.5v, Vperi 3.3v and						
Internal Power on Reset	10v). If one of these voltages drops below a pre-defined level, the PoE devices reset, until all						
	voltages are functional again.						
	The Internal PoE Communication between the Master PoE device and the Slave PoE devices						
ESPI Bus for Internal PoE Communication	is performed via an SPI bus comprising the MOSI, MISO, SCK and a single CS line, with						
	multiplexed address and data.						
Pre-Standard PD Detection	Enables detection and powering of pre-standard devices (PDs).						
Detection of Cisco Devices	Enables detection and powering of all Cisco devices including pre-standard terminals.						
	Enables the Host-CPU to reduce communication volume.						
Interrupt - Out	Whenever a PoE event (masked by the CPU) occurs, the PoE Controller sends an interrupt to						
	the Host for notification. Events are port-based, chip-based, or system-based ⁽¹⁾ .						
	Direct SPI interface to an external LED Stream circuitry. It enables the designer to implement a						
LED Support	simple LED circuit without any software code ⁽¹⁾						
Code Patching	SW code updates and configuration using external EEPROM or Downloaded by the HOST						
	CPU ⁽¹⁾						

(1) When using Interrupt_n pin - LED stream and external EEPROM support are not available. For more information refer to Microsemi's PoE Application Notes

Downloaded from Arrow.com.

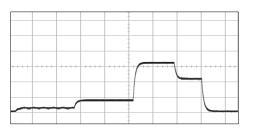
12 Ports Power Over Ethernet Manager

DATASHEET

Feature	Description
	Enhanced Modes – Additional Features
I ² C / UART Host interface	Allows I ² C communication or UART communication between the Host CPU and the PoE controller for continuous monitoring and for port parameter setting using the Serial Communication Protocol backwards compatible with the PD63000 and the PDIC66000.
Additional Continuous Monitoring per Port and Per System	The Host-CPU can receive additional information from the PoE controller such as: Additional port statuses, port matrix, PoE interrupt events, etc.
Additional parameters setting per Port and Per System	The Host-CPU can configure additional parameters such as: LEDs parameters, port matrix, PoE Controller interrupt-out masks, flags, etc.
Port Matrix	Allows the layout designer to connect the physical ports to the logical ports whenever needed.
Software Download for Program Upgrading	Allows upgrading of the PoE mode software via download procedure in the field.

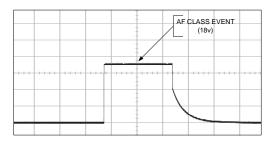
Page 6

www. Microsemi .com

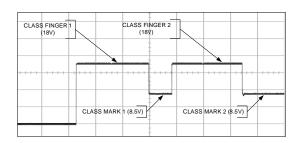

12 Ports Power Over Ethernet Manager

DATASHEET

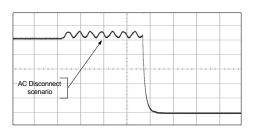
MAIN FUNCTIONAL SIGNALS DEXCRIPTION


Detection Signal

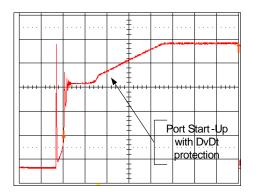
Waveform of the PSE output when performing line detection procedure is shown below. The PoE device utilizes 4 voltage levels over the output port.


AF Class Signal

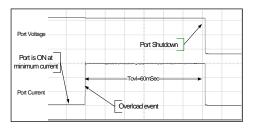
Waveform of the PSE output AF classification is shown below; Once the PD is recognized as a valid PoE PD, the classification voltage is applied, followed by full operating power.


MCA Class Signal

Waveform of the PSE output MCA classification is shown below; Once the PD is recognized as a valid Type 2 PoE PD (high power PD), the classification event 1 voltage is applied (18v), followed by a mark 1 event voltage followed again by classification event and mark event.


AC Disconnect

When a valid PD is connected to the port terminals, the AC signal amplitude sensed is as low as ~10 mVp-p. When the PD disconnects from the PSE terminals, the AC signal amplitude sensed rises. After several high pulses (300-400 ms), the port power shuts down.


Start Up Event

After the detection and classification phases end, the PSE will apply the full operation voltage.

Overload Event

If port current in exceeds ICUT threshold for longer than Toyl, the PSE removes power from the PI as shown in the figure below.

Page 7 Microsemi CPG - PoE BU 1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

www.Microsemi.com

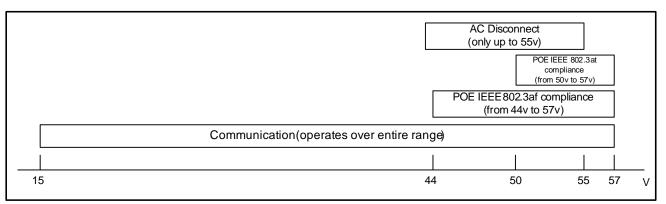
12 Ports Power Over Ethernet Manager

DATASHEET

RATINGS ABSOLUTE MAXIMUM

V _{main}	-0.3 to 80 V(1)
^v man DGND, AGND, QGND, SENSE_NEG	-0.3 to 0.3 V ⁽²⁾
V _{PORT_POSx}	-0.3 to 80 V ⁽¹⁾
V _{PORT_NEGx} , REF_PORT_NEG	
V _{PORT POSx} - V _{PORT NEGx}	-0.3 to 80 V ⁽¹⁾
PORT_SENSEx	7.2 to 25 V (1)
Gate_x	
VCC _{2p5} , ADC _{2p5}	
V _{PERI}	
EXT_REG I2CINI, ASICINI	
MISO, MOSI, SCK, SCL, SDA, CLK, RESETN, CS_N, INTERRUPT, POWER_BANK[20], LSD,	
MISO, MOSI, SCK, SCL, SDA, CLK, KESETN, CS_N, INTERKUFT, FOWEK_BANK[20], LSD, \vee	, LSC, LSL, $SDA_OUI-0.010$ (VPERI + 0.3)
v	
ESD (Human Body Model	2 to 2 kV ⁽³⁾
Max junction temperature (T _{junc})	
Junction-ambient thermal resistance (θ_{IA})	
Junction-case thermal resistance (θ_{IC})	
Lead temperature (soldering, 10 s)	
Storage temperature	40 to +125 °C
Notes : "x" defines port numbers, 0 thru 3, inclusive.	
 ⁽¹⁾ 80 V is the transient voltage that can be applied for 1 min max. ⁽²⁾ Maximum value between grounds. 	
⁽³⁾ ESD testing is performed in accordance with the Human Body Model (CZap = 100 pF, RZap = 1500 $^{(3)}$	0)
$^{(4)}$ with 4ML PCB – no air flow	<i>22)</i> .
Stresses beyond those listed above, may cause permanent damage to the device. Exposure to absolute	e maximum rating conditions for extended

OPERATING CONDITIONS PARAMETER MIN. NOM. MAX. UNIT Operating temperature -40 +85 °C At full load ambient Operational limitations (1) 15 to 44 44 to 55 55 to 57 V


(1) Operating functions depend on the input voltage, as shown in Figure 2.

periods, may affect device reliability.

12 Ports Power Over Ethernet Manager

DATASHEET

Figure 2: Operational Ranges

ELECTRICAL CHARACTERISTICS										
PIN NAME:										
PAD TYPE:	Schmitt T	Schmitt Trigger CMOS input, TTL Level with no internal Res.								
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE				
High Level Input Voltage	V _{IH}	2.0			V					
Low Level Input Voltage	V _{IL}			0.8	V					
Input Voltage hysteresis		0.3			V					
Input High Current	I _{IH}	-1		1	μA					
Input Low Current	I _{IL}	-1		1	μA					

PIN NAME: PAD TYPE:	 LSD Multiplexed with GPIO_2 LSC Multiplexed with GPIO_3 POWER_GOOD0 Multiplexed with GPIO_0 POWER_GOOD1 Multiplexed with GPIO_1 POWER_GOOD2 Multiplexed with GPIO_4 CMOS I/O, TTL Level with no internal pull up / pull down resistor, with Schmitt trigger Input 							
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE		
High Level Input Voltage	V _{IH}	2.0			V			
Low Level Input Voltage	V _{IL}			0.8	V			
Input Voltage Hysteresis		0.3			V			
Input High Current	I _{IH}	-1		+1	μA			

Copyright © 2015 Rev. 1.11, 22 October 2015 Microsemi CPG – PoE BU Page 9

COMPANY CONFIDENTIAL

PD69012

12 Ports Power Over Ethernet Manager

DATASHEET

Input Low Current	I _{IL}	-1	+1	μA	
High Level Output Voltage		VPERI- 0.4V		V	lout=-2 mA
Low Level Output Voltage			0.4	V	lout=2 mA

PIN NAME:	• C\$ • M	CK S_N OSI				
PAD TYPE:			vel with i	nternal p	ull up cı	irrent source, with Schmitt
	trigger In			-		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE
High Level Input Voltage	V _{IH}	2.0			V	
Low Level Input Voltage	V _{IL}			0.8	V	
Input Voltage Hysteresis		0.3			V	
Input High Current	I _{IH}	-1		+1	μA	
Input Low Current	I _{IL}	-1		+1	μA	
High Level Output		VPERI-			V	lout = -2 mA
Voltage		0.4 V				
Low Level Output				0.4	V	lout = 2 mA
Voltage						
Pull up current		10	20	50	uA	

PIN NAME:	• M	ISO							
PAD TYPE:		CMOS I/O, TTL Level with internal pull up current source, with Schmitt rigger Input							
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE			
High Level Input Voltage	V _{IH}	2.0			V				
Low Level Input Voltage	V _{IL}			0.8	V				
Input Voltage Hysteresis		0.3			V				
Input High Current	I _{IH}	-1		+1	μA				
Input Low Current	IIL	-1		+1	μA				

Copyright © 2015 Rev. 1.11, 22 October 2015

Downloaded from Arrow.com.

Page 10

12 Ports Power Over Ethernet Manager

DATASHEET

High Level Output	VPERI-			V	lout = -2 mA
Voltage	0.4V				
Low Level Output			0.4	V	lout = 2 mA
Voltage			0.1		
Pull down current	10	20	50	uA	

PIN NAME: PAD TYPE:	• S • SI Digital I/C CMOS Op	 SDA SDA_OUT Multiplexed with TEST_MODE Digital I/O – input/output open drain CMOS Open Drain Output with Schmitt Trigger Input, TTL Level (external 								
PARAMETER	pull up re SYMBOL	MIN	TYP	MAX	UNIT	NOTE				
High Level Input Voltage	V _{IH}	2.0			V					
Low Level Output Voltage	V _{OL}			0.4	V	lout = 6 mA				
Low Level Input Voltage	V _{IL}			0.8	V					
Input Voltage Hysteresis		0.3			V					
OFF State Output Current		-1		+1	uA					

PIN NAME:	CS_EEPROM & LSL Multiplexed with INTERRUPT_N							
PAD TYPE:	CMOS Op	CMOS Open Drain Output (external pull up res. Only))						
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE		
Low Level Output Voltage				0.4	V	lout = 6 mA		
OFF State Output Current		-1		+1	uA			

PANY ſ ONFIDE N TIAI

PD69012

www. Microsemi.com

12 Ports Power Over Ethernet Manager

DATASHEET

PIN NAME:	VPORT_NEGxREF_PORT_NEG							
PAD TYPE:	High Volta	High Voltage Analog Pad						
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE		
Pin Current consumption		-10		+10	uA	Port driver OFF, Vport differential measurement OFF, AC generator OFF		

PIN NAME:	PORT_SENSEx							
PAD TYPE:	Low Voltage Analog Pad							
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE		
Operating Voltage		0		0.5	V	With external 0.5 Ohms 2% to GND		
Internal Current Consumption				20	uA			

PIN NAME:		VPORT_POSxVPORT_NEGx							
PAD TYPE:	High Voltag	High Voltage Analog Pad							
PARAMETER	SYMBOL	SYMBOL MIN TYP MAX UNIT NOTE							
Operating Voltage (to GND)	0 62 V								

PIN NAME:	• VMAIN								
PAD TYPE:	High Voltag	High Voltage Supply Pad							
PARAMETER	SYMBOL MIN TYP MAX UNIT NOTE								
Operating Voltage		44		57	V				
VMAIN Current Consumption			13.6	16	mA	Total on VMAIN			

12 Ports Power Over Ethernet Manager

DATASHEET

PIN NAME:	• CP_OUT								
PAD TYPE:	Analog								
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE			
		4.4		<u> </u>	N/				
Operating voltage		44		68	V				
Pin Internal Current				5	mA				
Consumption									

PIN NAME:	• CP_IN						
PAD TYPE:	Analog						
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE	
Operating Voltage		34		57	V		

PIN NAME:	• AD	C2p5, VC	C2p5, VP	PERI, EXT_	REG	
PAD TYPE:	Analog					
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
ADC2p5 Output Voltage		2.45		2.55	V	
ADC2p5 Internal Current				6	mA	Recommended external cap.
Consumption						= 47 nF to 135 nF
VCC2p5 Output Voltage		2.37		2.62	V	Recommended external cap. = 47 nF to 135 nF
VPERI Output Voltage		3.10		3.5	V	Recommended external cap. = 1 uF to 4.7 uF
VPERI External Current				6	mA	Without external NPN
Load						
EXT_REG Output Current				6	mA	

www.*Microsemi*.com

12 Ports Power Over Ethernet Manager

DATASHEET

PIN NAME:	ASICINI, I2CINI (max. capacitance between mode input to GND should NOT exceed 1nF)								
PAD TYPE:	Analog	Analog							
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE			
Operating Voltage		0		ADC2p5	V				
Current Consumption		-1		+1	uA				

PIN NAME:	• IREF								
PAD TYPE:	Analog	Analog							
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE			
Output Voltage		1.21		1.34	-	With external 24.9 K resistor to GND			

PIN NAME:	• FET_Gx						
PAD TYPE:	Analog						
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE	
Output voltage		11		14	V		

DYNAMIC CHARACTERISTICS

The PD69012 utilizes three programmable current level thresholds (I_{min} , I_{cut} , I_{lim}) and three timers (T_{min} , T_{cut} , T_{lim}). Loads that dissipate more than I_{cut} for longer than T_{cut} are classified as 'overloads' and are automatically shutdown. Loads that consume I_{lim} current for more than T_{lim} are shutdown and classified to be in short circuit state. If the PD69012 is configured to operate in DC-Disconnect mode and the output power is below I_{min} for more than T_{min} , the PD is classified as 'no-load' and is shutdown. If the PD69012 is configured to operate in AC-Disconnect mode, then if the load's impedance is above a pre-defined impedance for more than T_{min} , the PD is classified as 'no-load' and is shutdown

Automatic recovery from overload and no-load conditions is attempted every T_{OVLREC} and T_{UDLREC} periods (typically 5 and 1 seconds respectively). Output power is limited to I_{lim} , which is a maximum peak current allowed at the port.

	AF PORTS PARAMETERS				
PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Automatic recovery from overload shutdown	T _{OVLREC} value, measured from port shutdown (can be modified through control port)		5		S
Automatic recovery from no-load shutdown	T _{UDLREC} value, measured from port shutdown (can be modified through control port)		1		S

PD69012

Downloaded from Arrow.com.

Company Confidential

12 Ports Power Over Ethernet Manager

DATASHEET

Cutoff timers accuracy	Typical	Typical accuracy of T _{cut}		2	0	ms
Inrush current	I _{Inrsh}	For t=50 ms, C _{load} =180 uF max.	400		450	mA
Output current operating range	I _{port}	Continuous operation after startup period.	10		Icut	mA
Output power available, operating range	P _{port}	Continuous operation after startup period, at port output.	0.57		15.4	W
Off mode current	I _{min1}	Must disconnect for t greater than TUVL	0		5	mA
	I _{min2}	May or may not disconnect for t greater than T_{UVL}	5	7.5	10	mA
PD power maintenance request drop-out time limit	TPMDO	Buffer period to handle transitions	300		400	ms
Over load current detection range	Icut	Time limited to TovL	350		400	mA
Over load time limit	Tovl		50		75	ms
Turn on rise time	T _{rise}	From 10% to 90% of V_{port} (Specified for PD load consisting of 100 uF capacitor in parallel to 200 Ω).	15			us
Turn off time	Toff	From V _{port} to 2.8 Vdc			500	ms
Time Maintain Power Signature	T _{MPS}	DC modulation time for dc disconnect		49		ms
AC disconnect impedance	Zac		27	600	2000	KΩ

AT PORTS PARAMETERS

	MIN.					
PARAMETER	CONDITIONS			TYP.	MAX.	UNIT
Automatic recovery from overload shutdown		T _{OVLREC} value, measured from port shutdown (can be modified through control port)				S
Automatic recovery from no-load shutdown		alue, measured from port shutdown odified through control port)		1		s
Cutoff timers accuracy	Typical ac	curacy of T _{cut}	4	2	0	ms
Inrush current	I _{Inrsh}	For t=50 ms, C _{load} =180 uF max.	400		450	mA
Default output current operating range	I _{port}	ort Continuous operation after startup period.			I _{cut}	mA
Optional output current operating range	I _{port_optional}	Continuous operation after startup period*.	10		I _{cut_optional}	mA
Default output power available, operating range	P _{port}	Continuous operation after startup period, at port output @ V _{main} = 55V.	0.57		33	W
Optional output power available, operating range	Pport_optional	Continuous operation after startup period, at port output @ V _{main} = 55V*	0.57		55	W
Off mode current	I _{min1}	Must disconnect for t greater than TUVL	0		5	mA
	I _{min2}	May or may not disconnect for t greater than T_{UVL}	5	7.5	10	mA
PD power maintenance request drop- out time limit	Трмдо	Buffer period to handle transitions	300		400	ms
Default over load current detection range	I _{cut}	Time limited to T _{OVL}	600		686	mA
Optional maximum over load current detection range	Icut_ optional	Time limited to T _{OVL} *	1000		1140	mA

www.*Microsemi*.com

PD69012

PD69012

Copyright © 2015 Rev. 1.11, 22 October 2015 Microsemi CPG – PoE BU Page 15

PANY

12 Ports Power Over Ethernet Manager

DATASHEET

Over load time limit	Tovl		50		75	ms
Turn on rise time	Trise	From 10% to 90% of V_{port} (Specified for PD load consisting of 100 uF capacitor in parallel to 200 Ω).	15			us
Turn off time	Toff	From V _{port} to 2.8 Vdc			500	ms
Time Maintain Power Signature	TMPS	DC modulation time for dc disconnect		49		ms
AC disconnect impedance	Zac		27	600	2000	KΩ

To modify the default current threshold, registers' values should be modified

THERMAL DATA

Power Dissipation

The internal power consumption of a single device from the DC input is based on the following:

Input voltage range	44 to 57 VDC
Input current	13.6 mA typical; 16 mA max

 $P_{main} = V_{main} \times I_{main}$

 P_{main} typ. = 48 VDC x 13.6 mA = 0.652W.

 P_{main} max. = 57 VDC x 16 mA = 0.912 W

The above data is considered with no external current consumption on Vperi (or with external NPN)

PROTECTION MECHANISM

The PD69012 has an internal thermal protection designed to protect against junction overheating. Two temperature sensors are integrated into the device: they are used for protection and for temperature monitoring.

Thermal protection mechanism protects the functionality of the device, in cases where over – temperature occurs.

Maximum temperature for ports operation = $155^{\circ}C$

Above this temperature the PD69012 will automatically shut down the ports to protect the device from overheating.

The PD69012 will turn-on the ports again after the temperature will decrease back to 130°C

An Interrupt signal will be generated from Interrupt_n pin when the measured temperature will reach the pre defined level in temperature alarm register.

Indicator Sensors

The temperature sensors monitor the local temperature inside the device. Their average temperature value is calculated by the PD69012. All values are stored in internal registers for data retrieval.

PD69012

12 Ports Power Over Ethernet Manager

DATASHEET

	FUNCTIONAL PIN DESCRIPTION								
Pin	Pin Name	Pin Type	Description						
0	PAD	Gnd	Exposed pad connected to underside of die						
1	VPORT_POS0	Analog I/O	Port 0 positive input						
2	VPORT_POS1	Analog I/O	Port 1 positive input						
3	VPORT_POS2	Analog I/O	Port 2 positive input						
4	VPORT_POS3	Analog I/O	Port 3 positive input						
5	VPORT_POS4	Analog I/O	Port 4 positive input						
6	VPORT_POS5	Analog I/O	Port 5 positive input						
7	VPORT_POS6	Analog I/O	Port 6 positive input						
8	VPORT_POS7	Analog I/O	Port 7 positive input						
9	VPORT_POS8	Analog I/O	Port 8 positive input						
10	VPORT_POS9	Analog I/O	Port 9 positive input						
11	VPORT_POS10	Analog I/O	Port 10 positive input						
12	VPORT_POS11	Analog I/O	Port 11 positive input						
13	CP_OUT	Analog I/O	Charge Pump Output Pulse						
14	CP_IN	Supply	Charge pump input						
15	VMAIN	Supply	Main Voltage supply						
16	REF_PORT_NEG	Analog I/O	Port negative reference						
17	DGND2	GND	Digital ground						
18	POWER_GOOD0 MULTIPLEXED WITH GPIO_0	Digital I/O	Power supply monitoring Multiplexed with General purpose I/O						
	POWER_GOOD1 MULTIPLEXED WITH GPIO_1	Digital I/O	Power supply monitoring Multiplexed with General purpose I/O						
20	POWER_GOOD2 MULTIPLEXED WITH GPIO_4	Digital I/O	Power supply monitoring multiplexed with general purpose I/O						
21	AGND1	GND	Analog ground						
22	VPORT_NEG6	Analog I/O	Port 6 negative voltage feeding						
23	PORT_SENSE6	Analog I/O	Channel current monitoring						
24	FET_G6	Analog I/O	Port 6 – Gate control						
25	FET_G7	Analog I/O	Port 7 – Gate control						
26	PORT_SENSE7	Analog I/O	Channel current monitoring						
27	VPORT_NEG7	Analog I/O	Port 7 negative voltage feeding						
28	VPORT_NEG8	Analog I/O	Port 8 negative voltage feeding						
29	PORT_SENSE8	Analog I/O	Channel current monitoring						

Copyright © 2015 Rev. 1.11, 22 October 2015

Microsemi CPG – PoE BU PD69012

1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

Downloaded from Arrow.com.

www.Microsemi.com

12 Ports Power Over Ethernet Manager

DATASHEET

FUNCTIONAL PIN DESCRIPTION							
Pin	Pin Name	Pin Type	Description				
30	FET_G8	Analog I/O	Port 8 – Gate control				
31	FET_G9	Analog I/O	Port 9 – Gate control				
32	PORT_SENSE9	Analog I/O	Channel current monitoring				
33	VPORT_NEG9	Analog I/O	Port 9 negative voltage feeding				
34	VPORT_NEG10	Analog I/O	Port 10 negative voltage feeding				
35	PORT_SENSE10	Analog I/O	Channel current monitoring				
36	FET_G10	Analog I/O	Port 10 – Gate control				
37	FET_G11	Analog I/O	Port 11 – Gate control				
38	PORT_SENSE11	Analog I/O	Channel current monitoring				
39	VPORT_NEG11	Analog I/O	Port 11 negative voltage feeding				
40	DGND1	GND	Digital ground				
41	DISABLE_PORTS_N	Digital Input	Disable All Ports Power – active Low				
42	CS_N	Digital I/O	SPI bus, Chip Select				
43	MISO	Digital I/O	SPI bus, Master Data in/slave out				
44	MOSI	Digital I/O	SPI bus, Master Data out/slave in				
45	SCK	Digital I/O	SPI bus, Serial clock I/O				
46	SCL	Digital Input	I ² C bus, Serial Clock Input				
47	SDA_OUT MULTIPLEXED WITH TEST_MODE	Digital I/O	Third pin in I ² C protocol Test Mode Pin – Must be tied to VPERI with pull-up resistor not used				
48	SDA	Digital I/O	I²C bus, open drain				
49	RESET_N	Digital I/O	Active Low Reset I/O				
50	IREF	Analog I/O	Current reference				
51	ASICINI	Analog Input	Analog input for chip initialization				
52	VCC2P5	Internal Regulator	Internal 2.5v source – not to be used for external devices				
53	I2CINI	Analog Input	Analog input for I ² C initialization				
54	QGND	GND	Quiet analog ground				
55	ADC2P5	Internal reference	ADC reference – not to be used for external devices				
56	EXT_REG	Analog Out	External regulation				
57	VPERI	Analog Out	Regulated 3.3v output voltage source for external devices				
58	CS_EEPROM_N & LSL MULTIPLEXED WITH INTERRUPT_N	Digital Output Open drain	SPI bus, EEPROM Chip Select & LED Stream Latch (if se Multiplexed with interrupt out				
right © 20	15	Microsemi	Page 1				

PD69012

Copyright © 2015 Rev. 1.11, 22 October 2015 Microsemi CPG – PoE BU

12 Ports Power Over Ethernet Manager

DATASHEET

	FUNCTIONAL PIN DESCRIPTION									
Pin	Pin Name	Pin Type	Description							
59	LSD MULTIPLEXED WITH GPIO_2	Digital I/O	LED Stream Data – data out Multiplexed with General purpose I/O							
60	LSC MULTIPLEXED WITH GPIO_3	Digital I/O	Led Stream CLK- CLK out Multiplexed with General purpose I/O							
61	SENSE_NEG	Analog I/O	Port sense reference							
62	AGND2	GND	Analog ground							
63	VPORT_NEG0	Analog I/O	Port 0 negative voltage feeding							
64	PORT_SENSE0	Analog I/O	Channel current monitoring							
65	FET_G0	Analog I/O	Port 0 – Gate control							
66	FET_G1	Analog I/O	Port 1 – Gate control							
67	PORT_SENSE1	Analog I/O	Channel current monitoring							
68	VPORT_NEG1	Analog I/O	Port 1 negative voltage feeding							
69	VPORT_NEG2	Analog I/O	Port 2 negative voltage feeding							
70	PORT_SENSE2	Analog I/O	Channel current monitoring							
71	FET_G2	Analog I/O	Port 2 – Gate control							
72	FET_G3	Analog I/O	Port 3 – Gate control							
73	PORT_SENSE3	Analog I/O	Channel current monitoring							
74	VPORT_NEG3	Analog I/O	Port 3 negative voltage feeding							
75	VPORT_NEG4	Analog I/O	Port 4 negative voltage feeding							
76	PORT_SENSE4	Analog I/O	Channel current monitoring							
77	FET_G4	Analog I/O	Port 4 – Gate control							
78	FET_G5	Analog I/O	Port 5 – Gate control							
79	PORT_SENSE5	Analog I/O	Channel current monitoring							
80	VPORT_NEG5	Analog I/O	Port 5 negative voltage feeding							

Downloaded from Arrow.com.

Page 19

www.Microsemi.com

12 Ports Power Over Ethernet Manager

DATASHEET

CONFIGURATION PINS

There are two main configuration pins (see Figure 3) utilized in the PD69012, these pins configure the operation mode of the chip and the communication addresses (SPI and I^2C)

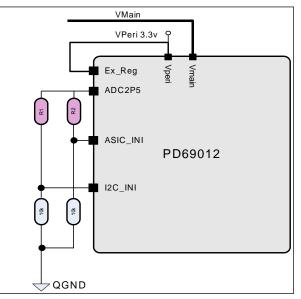


Figure 3: Electronic Connection of Configuration Pins

ASIC_INI

PoE Device's configuration is performed via the ASIC_INI pin, as shown in the following table. The ASIC_INI analog signal is converted into a 10-bit register (A/D). Once a hard Reset pulse is detected, the data is latched into an internal mode register.

Step	Min Voltage	Max Voltage	Mode	E-SPI Address (B2-B0)	Description
0	0	0.14	Master	000	Stand Alone Master Mode configuration – power management
0	0	0.14		N	master
1	0.19	0.29	Slave0	000	Set the E-SPI address in Stand Alone Slave & macro Modes
2	0.35	0.44	Slave1	001	Set the E-SPI address in Stand Alone Slave & macro Modes
3	0.51	0.6	Slave2	010	Set the E-SPI address in Stand Alone Slave & macro Modes
4	0.67	0.75	Slave3	011	Set the E-SPI address in Stand Alone Slave & macro Modes
5	0.83	0.9	Slave4	100	Set the E-SPI address in Stand Alone Slave & macro Modes
6	0.99	1.06	Slave5	101	Set the E-SPI address in Stand Alone Slave & macro Modes
7	1.15	1.21	Slave6	110	Set the E-SPI address in Stand Alone Slave & macro Modes
8	1.3	1.36	Slave7	111	Set the E-SPI address in Stand Alone Slave & macro Modes
9-15	2.35	2.5	Manual	000	Internal use only – debug mode

Notes:

In the Auto mode – the PD69012 communicates with the Host via the I²C bus.

In the other modes – the PD69012 is communicates with the controller via the ESPI bus or I²C

 Copyright © 2015
 Microsemi
 Pag

 Rev. 1.11, 22 October 2015
 CPG – PoE BU
 CPG – PoE BU

 1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

12 Ports Power Over Ethernet Manager

DATASHEET

I2C_Address

A standard I2C interface is used to communicate between the PD69012 and the Host controller in Auto Mode, with a bit-rate of up to 400 kb/s. The I²C address is based on 7 bits and is a combination of the I2C_INI and ASIC_INI pins as shown in the below tables:

The I^2C address is created by the following register:

MSB

LS								
4 bit based on I ² C INIT Voltage Level				sed on A oltage Lev				
A4	A3	A2	A1	B2	B1	B0		

ASIC_INI Voltage Level	B2, B1, B0
0 to 15 according to ASIC_INI table	ESPI address

I ² C Address Step	I2C_INI Voltage Level (Volt)		I2C_INI Internal Register (A4-A1)	Notes
	MIN	MAX		
0	0	0.14	0000	General call address – Should not be used
1	0.19	0.29	0001	
2	0.35	0.44	0010	
3	0.51	0.6	0011	
4	0.67	0.75	0100	
5	0.83	0.9	0101	
6	0.99	1.06	0110	
7	1.15	1.21	0111	
8	1.3	1.36	1000	
9	1.46	1.51	1001	
10	1.62	1.67	1010	
11	1.78	1.82	1011	
12	1.94	1.97	1100	
13	2.05	2.13	1101	
14	2.25	2.28	1110	
15	2.35	2.5	1111	

12 Ports Power Over Ethernet Manager

DATASHEET

BLOCK DIAGRAM

The PD69012 PoE Manager (see Figure 4) complies with all the IEEE standard 802.3at detection requirements. The PD69012 is built around two major sections:

- 1. A common Digital section that serves all 12 channels
- 2. Eight separate identical channels for driving ports

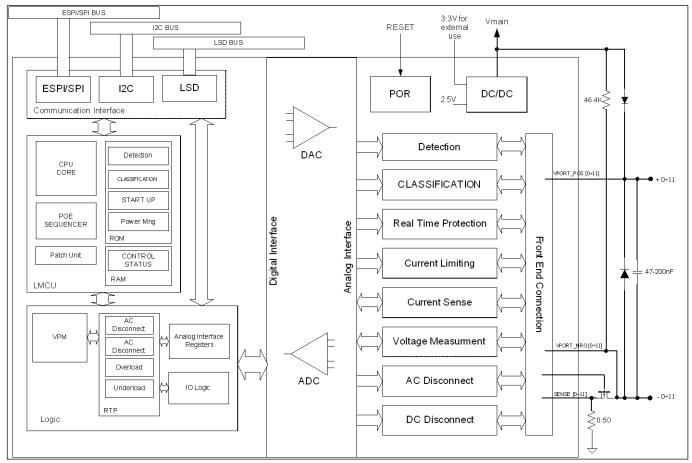


Figure 4: PoE Manager – Block Diagram

Communication I/O

The PD69012 incorporates two communication interfaces. The first interface is an SPI bus which connects the PD69012 devices to each other, or to the external Controller. The second interface is an I²C utilized to communicate with Host. . Both interfaces send the contents of the internal registers between the PD69012 logic and the PoE Controller. LEDs indication circuit is supported by using the LED Stream Data bus (LSD).

Power Management

Receives data from the PoE sequencer and distribute total power to all relevant ports according to priority levels, depending on the system's total power.

Detection

The PoE Controller or the PoE sequencer generates a request to apply separate voltage levels to the output port. A measurement circuit monitors the difference between the various levels.

Voltage differences are compared with values stored in the registers. By comparing these values, the system can determine whether to enable a port or not.

Copyright © 2015	Microsemi	Page 22
Rev. 1.11, 22 October 2015	CPG – PoE BU	
1 Enterprise, Aliso Viejo, CA 92656	6, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 22	21-7100 Fax: (949) 756-0308
wnloaded from Arrow.com.		

12 Ports Power Over Ethernet Manager

DATASHEET

Classification

Upon request from the PoE Controller or from the PoE sequencer, the state machine applies a regulated Class Event and Mark Event voltages to the ports as required by the IEEE standard.

The current is measured by comparing the real current flow with a number of preset thresholds; in this manner the class is verified.

Overload

This block senses when port current exceeds the maximum current level as specified in the IEEE-802.3at standard, and disconnects the port if required.

AC Disconnect

The system applies a sinusoidal signal to the positive port terminal. The voltage developed on the port terminals is proportional to the load's value. If the load is high, the AC component riding on the port terminals is low. If the load is low, the AC component is high. A dedicated circuit measures the AC component level and compares it with a pre-defined value stored in a register. Based on the comparison's results, the system determines whether to disable a port or not.

DC Disconnect

This block senses when the port current drops below 7.5 mA. If this is the case, timers in the Channel RT Controller start counting. The Channel RT Controller acts in accordance with pre-programmed thresholds limits and time windows, prior to initiating a disconnect status for that port. The circuitry takes into account PDs that modulate their current consumption, disconnecting them only if necessary.

Power on Reset (POR)

The POR Monitors the internal DC levels; if these voltages drop below specific thresholds, a Reset signal is generated and the PD690012s are reset via the RESET_N pin.

DC/DC Circuit

This circuit produces 2.5V and 3.3v, derived from the main supply.

Real Time Protection

This circuitry performs all real time measurements and sends the results to the logic circuitry in order to determine whether to disconnect a port or not.

Current Limit

This circuit continuously monitors the current of powered ports and limits the current to a specific value in cases where an over load occurs. If the current exceeds a specific level, the system starts measuring the elapsed time. If this time period is greater than a preset threshold, the port is disconnected.

LMCU controller

The LMCU has an integrated CPU, RAM and ROM memories. Certain major functions are managed by the LMCU core running the SW from the ROM.

PD69012

www.Microsemi.com

12 Ports Power Over Ethernet Manager

DATASHEET

TYPICAL APPLICATION

The PD69012 may be integrated into a number of applications such as daughter boards, Ethernet switches or routers. Examples of such applications are described below:

Integrated directly into a switch – facilitates entire PoE concept, by including the IC(s) on the main switch's PCB.

Daughter board add-on – in which the IC is integrated into a small PCB dedicated for PoE, mounted on top of the switch's main PCB or in the DIMM module

Integrated into an RJ45 connector - saving space on the main board and creating small differences between the PoE and non-PoE versions of a switch

Midspans – stand alone devices, installed between the Ethernet switch and PDs (Powered Devices) such as telephone, camera, wireless LAN, etc.

These Midspans include the PD69012 IC as a PoE control element, destined to inject power over the communication lines.

Figure 5 and Figure 6 provide an example of basic applications of the PD69012 in an AC Disconnect Mode and the DC Disconnect Mode:

The PD69008 can be integrated into a number of applications such as daughter boards, Ethernet switches or routers. Examples of such applications are described below:

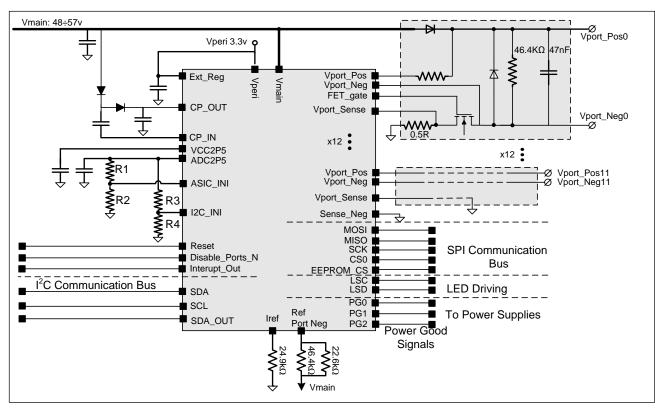
Integrated directly into a switch: Facilitates entire PoE concept by including the IC(s) on the main switch's PCB.

Daughter board add-on: The IC is integrated into a small dedicated PoE PCB, mounted on top of the switch's main PCB or into a DIMM module.

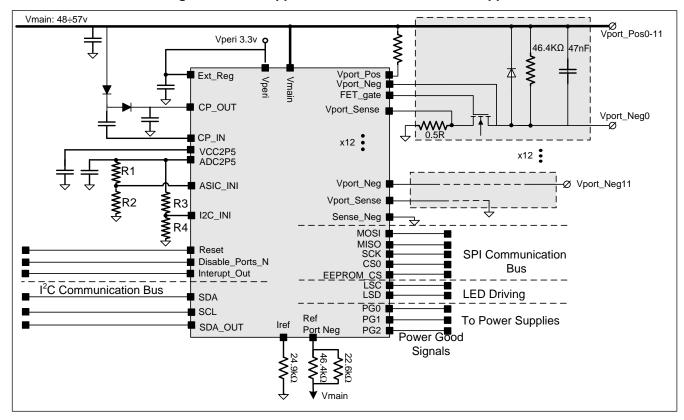
Integrated into an RJ45 connector: Saves space on the main board and creates small differences between the PoE and non-PoE versions of a switch.

Midspans: Stand-alone devices, installed between the Ethernet switch and the PDs (Powered Devices) such as telephones, cameras, wireless LANs, etc.

These Midspans include the PD69008 IC as a PoE control element, destined to inject power over the communication lines


Figure 5 and Figure 6 provide examples of basic applications of the PD69008 in an AC Disconnect Mode and the DC Disconnect Mode:

Downloaded from Arrow.com.



12 Ports Power Over Ethernet Manager

DATASHEET

Figure 5: Basic Application with AC Disconnect Support

Figure 6: Basic Application with DC Disconnect Support

PD69012

12 Ports Power Over Ethernet Manager

DATASHEET

The information contained in the document is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. The product is subject to other terms and conditions which can be located on the Web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level / Date	Para. Affected	Description
0.1 / 15 June 2008	-	Initial Preliminary Release
0.2 / 31 July 2008	-	Update Features List
		Add Operational Ranges figure
		Update Electrical Characteristics
		Update ports Parameters
		Update Basic Application Diagrams
0.3 / 22 January 2009	p1	Ordering info-modified
0.4 / 05 May 2009	Whole document	Added update for default current limit
0.4 / 27 Jul 2010		Changing catalog numbers metrology
0.5 / 14 Oct 2010	-	Update FET_Gx limits
1.0 / 18 Nov 2010	Whole document	Changing template
1.1 / 31-Jan-2011		Rotating package pin out figure
1.11 / 22 Ocvtober 2015		Updating footer

© 2015 Microsemi Corp. All rights reserved.

For support contact: poesupport@microsemi.com Visit our web site at: www.microsemi.com Cat. No. DS_PD69012

Downloaded from Arrow.com.

Microsemi CPG – PoE BU Page 26