

MIC5800/5801

4/8-Bit Parallel-Input Latched Drivers

Final Information

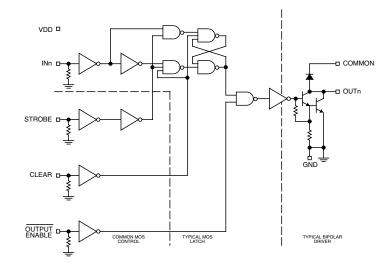
General Description

The MIC5800/5801 latched drivers are high-voltage, highcurrent integrated circuits comprised of four or eight CMOS data latches, a bipolar Darlington transistor driver for each latch, and CMOS control circuitry for the common CLEAR, STROBE, and OUTPUT ENABLE functions.

The bipolar/MOS combination provides an extremely lowpower latch with maximum interface flexibility. MIC5800 contains four latched drivers; MIC5801 contains eight latched drivers.

Data input rates are greatly improved in these devices. With a 5V supply, they will typically operate at better than 5MHz. With a 12V supply, significantly higher speeds are obtained.The CMOS inputs are compatible with standard CMOS, PMOS, and NMOS circuits. TTL or DTL circuits may require the use of appropriate pull-up resistors. The bipolar outputs are suitable for use with relays, solenoids, stepping motors, LED or incandescent displays, and other high-power loads.Both units have open-collector outputs and integral diodes for inductive load transient suppression. The output transistors are capable of sinking 500mA and will sustain at least 50V in the OFF state. Because of limitations on package power dissipation, the simultaneous operation of all drivers at maximum rated current can only be accomplished by a reduction in duty cycle. Outputs may be paralleled for higher load current capability.

Features


- 4.4MHz Minimum Data Input Rate
- · High-Voltage, Current Sink Outputs
- Output Transient Protection
- · CMOS, PMOS, NMOS, and TTL Compatible Inputs
- Internal Pull-Down Resistors
- Low-Power CMOS Latches

Part Number				
Standard	Standard Pb-Free		Package	
MIC5800BN	MIC5800YN	– 40°C to + 85°C	14–Pin Plastic DIP	
MIC5800BM	MIC5800YM	– 40°C to + 85°C	14–Pin SOIC	
MIC5801BN	MIC5801YN	– 40°C to +85°C	22–Pin Plastic DIP	
5962-8764001WA1		– 55°C to +125°C	22–Pin CERDIP	
MIC5801BV	MIC5801YV	– 40°C to + 85°C	28–Pin PLCC	
MIC5801BWM	MIC5801YWM	– 40°C to +85°C	24–Pin SOIC	

Ordering Information

¹Standard Military Drawing number for MIC5801AJBQ

Functional Diagram

IN

-40°C to +85°C

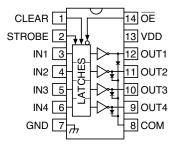
at +25°C Free-Air Temperature	
Output Voltage, V _{CE}	50V
Supply Voltage, V _{DD}	15V
Input Voltage Range, VIN	–0.3V to V _{DD} + 0.3V
Continuous Collector Current, IC	500mA
Package Power Dissipation:	
MIC5800 Plastic DIP (Note 1)	2.1W
MIC5801 Plastic DIP (Note 2)	2.5W
MIC5800 SOIC (Note 3)	1.0W
MIC5801 PLCC (Note 4)	2.25W
MIC5801 CERDIP (Note 5)	3.1W
MIC5801 Wide SOIC (Note 6)	1.4 Watt

-65°C to +125°C Storage Temperature Range, TS

Note 1: Derate at 16.7 mW/°C above $T_A = +25^{\circ}C$

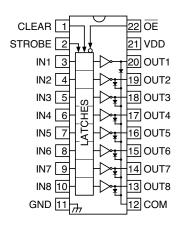
Operating Temperature Range, TA

Note 2: Derate at 20 mW/°C above $T_A = +25^{\circ}C$


Note 3: Derate at 8.5 mW/°C above $T_A = +25^{\circ}C$

Note 4: Derate at 18.2 mW/°C above $T_A = +25^{\circ}C$ Note 5: Derate at 25 mW/°C above $T_A = +25^{\circ}C$

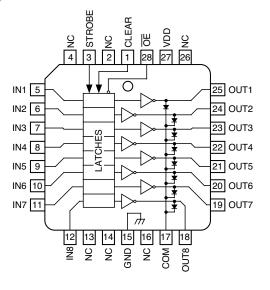
Note 6: Derate at 11 mW/°C above $T_A = +25$ °C


Note 7: Micrel CMOS devices have input-static protection but are susceptible to damage when exposed to extremely high static electrical charges.

Pin Configuration

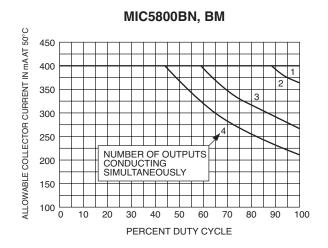
VDD

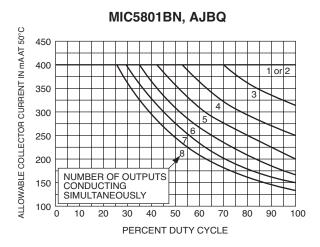
MIC5800BN, BM


MIC5801BN, AJBQ

_	
OE 1	24 VDD
CLEAR 2	23 NC
STROBE 3	22 OUT1
IN1 4	21 OUT2
IN2 5	20 OUT3
IN3 6	19 OUT4
IN4 7	18 OUT5
IN5 8	17 OUT6
IN6 9	16 OUT7
IN7 10	15 OUT8
IN8 11	14 NC
GND 12	13 COM

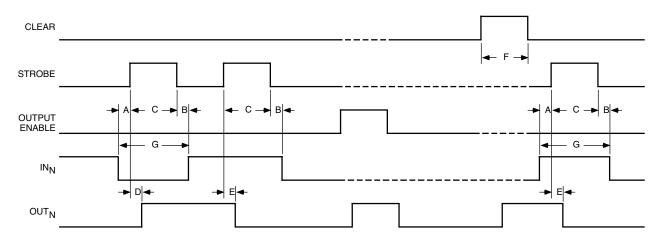
MIC5801BWM


MIC5800/5801 Downloaded from Arrow.com.


Pin Configurations (continued)

MIC5801BV

Allowable Output Current As A Function of Duty Cycle



Electrical Characteristics (Note 1): at T_A = +25°C, V_{DD} = 5V (unless otherwise noted)

			Limits		T	
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Output Leakage Current	ICEX	V _{CE} = 50 V, T _A = +25°C			50	μΑ
		V _{CE} = 50 V, T _A = +70°C			100]
Collector-Emitter	V _{CE(SAT)}	I _C = 100 mA		0.9	1.1	V
Saturation Voltage		I _C = 200 mA		1.1	1.3]
		I _C = 350 mA, V _{DD} = 7.0 V		1.3	1.6]
Input Voltage	V _{IN(0)}				1.0	V
	VIN(1)	V _{DD} = 12 V	10.5			1
		V _{DD} = 10 V	8.5]
		V _{DD} = 5.0 V (See Note)	3.5]
Input Resistance	R _{IN}	V _{DD} = 12 V	50	200		kΩ
		V _{DD} = 10 V	50	300]
		V _{DD} = 5.0 V	50	600		
Supply Current	I _{DD(ON)}	V _{DD} = 12 V, Outputs Open		1.0	2.0	mA
	(Each	V _{DD} = 10 V, Outputs Open		0.9	1.7]
	Stage)	V _{DD} = 5.0 V, Outputs Open		0.7	1.0]
	I _{DD(OFF)}	V _{DD} = 12 V, Outputs Open, Inputs = 0 V			200	μA
	(Total)	V _{DD} = 5.0 V, Outputs Open, Inputs = 0 V		50	100	
Clamp Diode	IR	V _R = 50 V, T _A = +25°C			50	μA
Leakage Current		V _R = 50 V, T _A = +70°C			100]
Clamp Diode Forward Voltage	V _F	I _F = 350 mA		1.7	2.0	V

NOTE : Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to insure a minimum logic "1". **NOTE 1:** Specification for packaged product only.

Timing Conditions

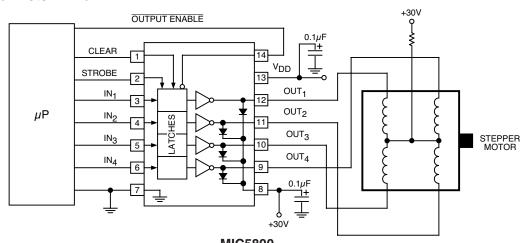
(Logic Levels are VDD and Ground)

Α.	Minimum data active time before strobe enabled (data set-up time)	50ns
	Minimum data active time after strobe disabled (data hold time)	
	Minimum strobe pulse width	
	Typical time between strobe activation and output on to off transition	
E.	Typical time between strobe activation and output off to on transition	500ns
F.	Minimum clear pulse width	
	Minimum data pulse width	

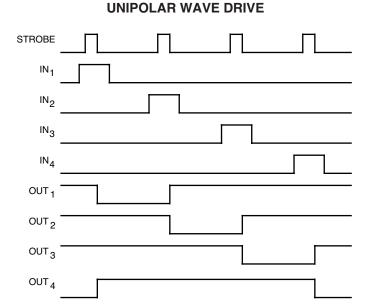
Truth Table

			Output	OUT _N	
INN	Strobe	Clear	Enable	t-1	t
0	1	0	0	х	OFF
1	1	0	0	Х	ON
Х	Х	1	Х	Х	OFF
Х	Х	Х	1	Х	OFF
Х	0	0	0	ON	ON
Х	0	0	0	OFF	OFF

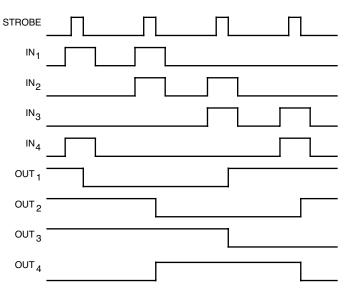
Information present at an input is transferred to its latch when the STROBE is high. A high CLEAR input will set all latches to the output OFF condition regardless of the data or STROBE input levels. A high OUTPUT ENABLE will set all outputs to the off condition, regardless of any other input conditions. When the OUTPUT ENABLE is low, the outputs depend on the state of their respective latches.

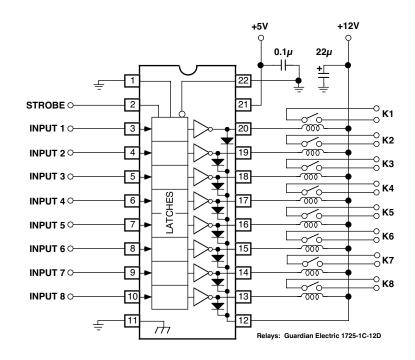

X = Irrelevant

t-1 = previous output state

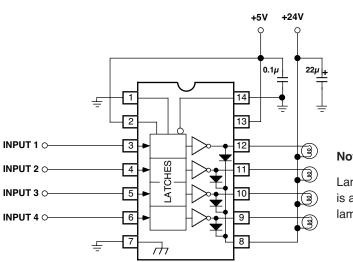

t = present output state

Typical Application

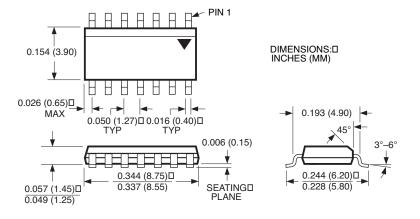

Unipolar Stepper-Motor Drive



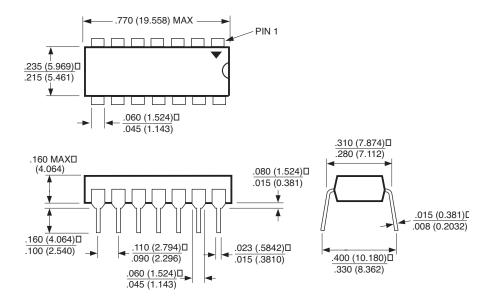
MIC5800



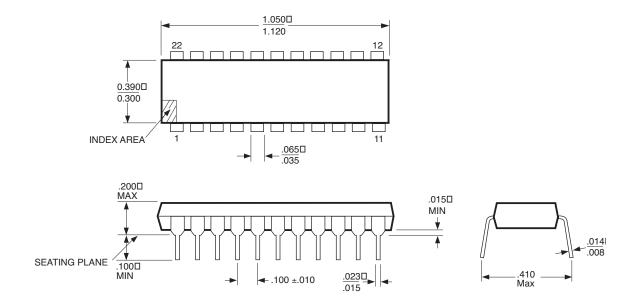
UNIPOLAR 2-PHASE DRIVE

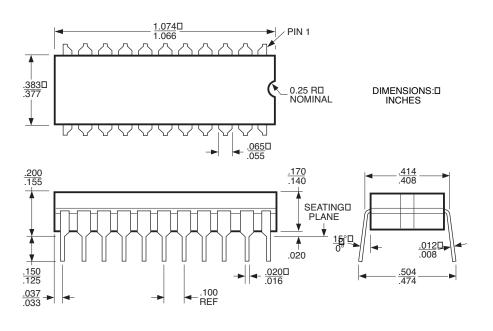


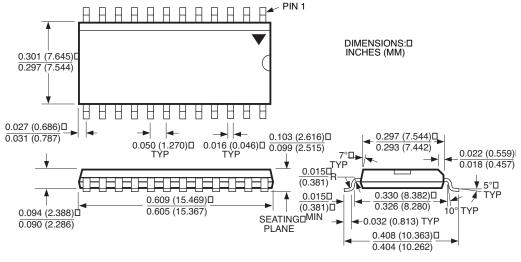
Note:

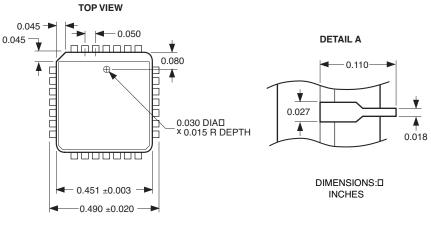

Lamp inrush current is approximately 10× lamp operating current.

MIC5800 Incandescent/Halogen Lamp Driver

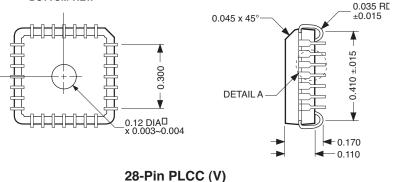

Package Information


14-Pin SOIC (M)


14-Pin Plastic DIP (N)



22-Pin Ceramic DIP (J)



24-Pin SOIC (M)

BOTTOM VIEW

SIDE VIEW

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 1998 Micrel Incorporated