


# APT10M09B2VFR APT10M09LVFR

**100V 100A 0.01**Ω

# POWER MOS V® FREDFET

Power MOS V® is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V® also achieves faster switching speeds through optimized gate layout.



- T-MAX™ or TO-264 Package
- Avalanche Energy Rated

Faster Switching

• FAST RECOVERY BODY DIODE

Lower Leakage



### **MAXIMUM RATINGS**

All Ratings:  $T_C = 25^{\circ}C$  unless otherwise specified.

| Symbol            | Parameter                                                     | APT10M09B2VFR_LVFR | UNIT  |  |
|-------------------|---------------------------------------------------------------|--------------------|-------|--|
| V <sub>DSS</sub>  | Drain-Source Voltage                                          | 100                | Volts |  |
| I <sub>D</sub>    | Continuous Drain Current <sup>6</sup> @ T <sub>C</sub> = 25°C | 100                | Amps  |  |
| I <sub>DM</sub>   | Pulsed Drain Current ①                                        | 400                | Amps  |  |
| V <sub>GS</sub>   | Gate-Source Voltage Continuous                                | ±30                | Volts |  |
| $V_{GSM}$         | Gate-Source Voltage Transient                                 | ±40                | VOILS |  |
| $P_{D}$           | Total Power Dissipation @ T <sub>C</sub> = 25°C               | 625                | Watts |  |
| , D               | Linear Derating Factor                                        | 5.00               | W/°C  |  |
| $T_J$ , $T_{STG}$ | Operating and Storage Junction Temperature Range              | -55 to 150         | °C    |  |
| $T_L$             | Lead Temperature: 0.063" from Case for 10 Sec.                | 300                |       |  |
| I <sub>AR</sub>   | Avalanche Current (Repetitive and Non-Repetitive)             | 100                | Amps  |  |
| E <sub>AR</sub>   | Repetitive Avalanche Energy <sup>①</sup>                      | 50                 | mJ    |  |
| E <sub>AS</sub>   | Single Pulse Avalanche Energy <sup>4</sup>                    | 3000               | 1110  |  |

### STATIC ELECTRICAL CHARACTERISTICS

| Symbol              | Characteristic / Test Conditions                                                    | MIN | TYP | MAX  | UNIT  |
|---------------------|-------------------------------------------------------------------------------------|-----|-----|------|-------|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$                | 100 |     |      | Volts |
| R <sub>DS(on)</sub> | Drain-Source On-State Resistance $@$ ( $V_{GS} = 10V, I_D = 50A$ )                  |     |     | 0.01 | Ohms  |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current (V <sub>DS</sub> = 100V, V <sub>GS</sub> = 0V)      |     |     | 100  | μΑ    |
|                     | Zero Gate Voltage Drain Current $(V_{DS} = 80V, V_{GS} = 0V, T_{C} = 125^{\circ}C)$ |     |     | 500  |       |
| I <sub>GSS</sub>    | Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$                       |     |     | ±100 | nA    |
| V <sub>GS(th)</sub> | Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$                   | 2   |     | 4    | Volts |

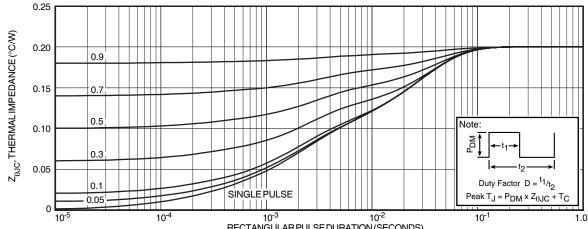
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

### **DYNAMIC CHARACTERISTICS**

### APT10M09B2VFR LVFR

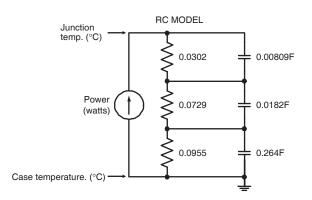
| Symbol              | Characteristic                 | <b>Test Conditions</b>       | MIN | TYP  | MAX | UNIT |
|---------------------|--------------------------------|------------------------------|-----|------|-----|------|
| C <sub>iss</sub>    | Input Capacitance              | $V_{GS} = 0V$                |     | 9875 |     |      |
| C <sub>oss</sub>    | Output Capacitance             | V <sub>DS</sub> = 25V        |     | 3940 |     | рF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance   | f = 1 MHz                    |     | 1470 |     |      |
| $Q_g$               | Total Gate Charge <sup>③</sup> | V <sub>GS</sub> = 10V        |     | 350  |     |      |
| Q <sub>gs</sub>     | Gate-Source Charge             | $V_{DD} = 50V$               |     | 60   |     | nC   |
| $Q_{gd}$            | Gate-Drain ("Miller") Charge   | I <sub>D</sub> = 100A @ 25°C |     | 180  |     |      |
| t <sub>d(on)</sub>  | Turn-on Delay Time             | V <sub>GS</sub> = 15V        |     | 18   |     |      |
| t <sub>r</sub>      | Rise Time                      | $V_{DD} = 50V$               |     | 36   |     | ns   |
| t <sub>d(off)</sub> | Turn-off Delay Time            | I <sub>D</sub> = 100A @ 25°C |     | 50   |     | 113  |
| t <sub>f</sub>      | Fall Time                      | $R_G = 0.6\Omega$            |     | 9    |     |      |

### SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

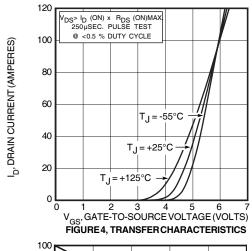

| Symbol            | Characteristic / Test Conditions                                       |                        | MIN | TYP | MAX | UNIT   |
|-------------------|------------------------------------------------------------------------|------------------------|-----|-----|-----|--------|
| I <sub>S</sub>    | Continuous Source Current (Body Diode)                                 |                        |     |     | 100 | Amps   |
| I <sub>SM</sub>   | Pulsed Source Current ① (Body Diode)                                   |                        |     |     | 400 | Allips |
| V <sub>SD</sub>   | Diode Forward Voltage ② (V <sub>GS</sub> = 0V, I <sub>S</sub> = -100A) |                        |     |     | 1.3 | Volts  |
| dv/ <sub>dt</sub> | Peak Diode Recovery dv/dt 5                                            |                        |     |     | 8   | V/ns   |
|                   | Reverse Recovery Time                                                  | T <sub>i</sub> = 25°C  |     |     | 190 |        |
| t <sub>rr</sub>   | $(I_S = -100A, \frac{di}{dt} = 100A/\mu s)$                            | T <sub>j</sub> = 125°C |     |     | 370 | ns     |
|                   | Reverse Recovery Charge                                                | T <sub>j</sub> = 25°C  |     | 0.4 |     | μС     |
| $Q_{rr}$          | $(I_S = -100A, di/_{dt} = 100A/\mu s)$                                 | T <sub>j</sub> = 125°C |     | 1.7 |     |        |
| I <sub>RRM</sub>  | Peak Recovery Current                                                  | T <sub>j</sub> = 25°C  |     | 9   |     | Amno   |
|                   | $(I_S = -100A, \frac{di}{dt} = 100A/\mu s)$                            | T <sub>j</sub> = 125°C |     | 15  |     | Amps   |

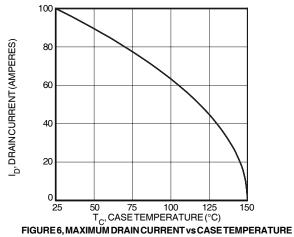
### THERMAL CHARACTERISTICS

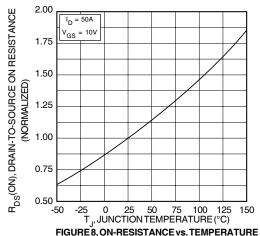
| Symbol        | Characteristic      | MIN | TYP | MAX  | UNIT |
|---------------|---------------------|-----|-----|------|------|
| $R_{	hetaJC}$ | Junction to Case    |     |     | 0.20 | °C/W |
| $R_{	hetaJA}$ | Junction to Ambient |     |     | 40   |      |


- ① Repetitive Rating: Pulse width limited by maximum junction temperature
- 2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
- 3 See MIL-STD-750 Method 3471

- 4 Starting T<sub>j</sub> = +25°C, L = 0.60mH, R<sub>G</sub> = 25 $\Omega$ , Peak I<sub>L</sub> = 100A
- (5)  $^{\text{dv}}/_{\text{dt}}$  numbers reflect the limitations of the test circuit rather than the device itself.  $I_{\text{S}} \leq -I_{\text{D}}100\text{A}$   $^{\text{di}}/_{\text{dt}} \leq 200\text{A}/\mu\text{s}$   $V_{\text{B}} \leq 100\text{V}$   $T_{\text{J}} \leq 150^{\circ}\text{C}$
- 6 The maximum current is limited by lead temperature.



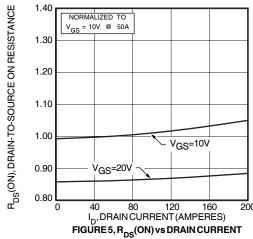


RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION

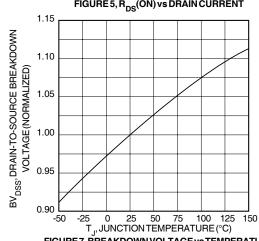

## Typical Performance Curves



### FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL




### APT10M09B2VFR LVFR









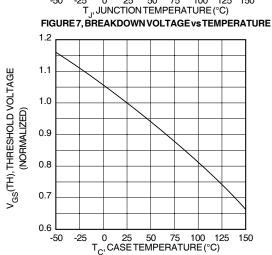
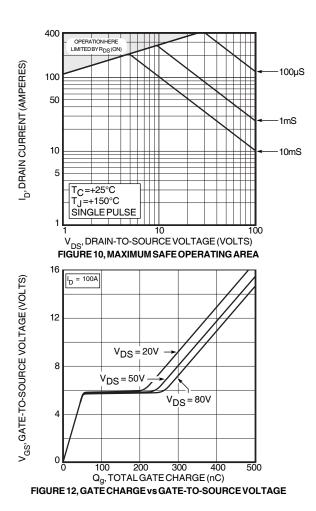




FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE

### APT10M09B2VFR LVFR



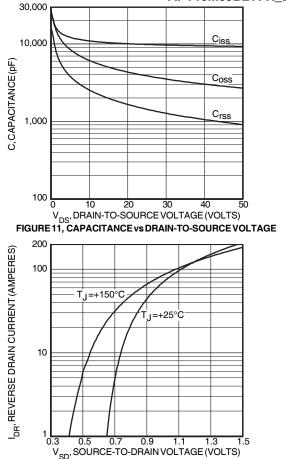
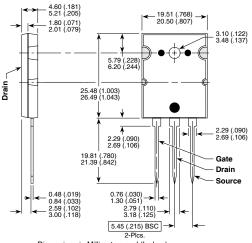



FIGURE 13, SOURCE-DRAIN DIODE FORWARD VOLTAGE


### T-MAX™ (B2) Package Outline (B2VFR)

## 4.69 (.185) 5.31 (.209) 15.49 (.610) 16.26 (.640) 1.49 (.059) 2.49 (.098) 5.38 (.212) 6.20 (.244) Drain -20.80 (.819) 21.46 (.845) 4.50 (.177) Max. 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) Gate 1.01 (.040) 1.40 (.055) Drain Source 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC

These dimensions are equal to the TO-247 without the mounting hole.

Dimensions in Millimeters and (Inches)

# TO-264 (L) Package Outline (LVFR)



Dimensions in Millimeters and (Inches)

# **The Microchip Website**

Microchip provides online support via our website at <a href="www.microchip.com/">www.microchip.com/</a>. This website is used to make files andinformation easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# **Product Change Notification Service**

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

# **Legal Notice**

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONSOR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectualproperty rights unless otherwise stated.

## **Trademarks**

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.