

500V, 15A, 0.39Ω Max, t_{rr} ≤190ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{fT} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- · Ultra low Crss for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	15F50K	15F50KF	Unit
I _D	Continuous Collector Current @ T _C = 25°C	15	6.2	
	Continuous Collector Current @ T _C = 100°C	10	3.9	Α
I _{DM}	Pulsed Drain Current ¹	45	18.6	
V_{gs}	Gate-Source Voltage ²	±3	٧	
E _{AS}	Single Pulse Avalanche Energy ²	305		mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	7	А	

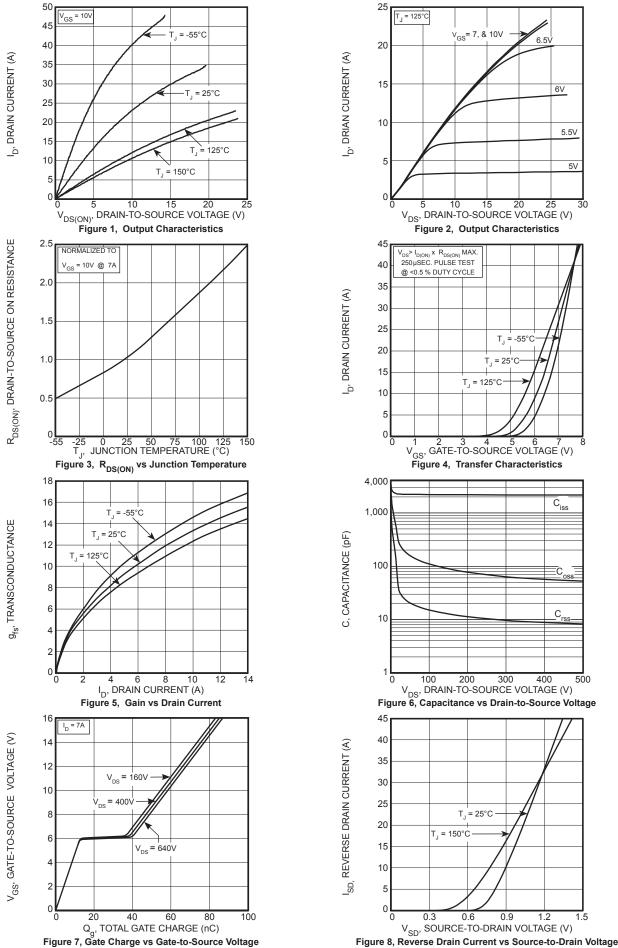
Thermal and Mechanical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
-	Power Dissipation (T _C = 25°C) [K]			223	W
P_{D}	Power Dissipation (T _C = 25°C) [KF]			37	
$R_{\theta JC}$	Junction to Case Thermal Resistance [K]			0.56	
$R_{\theta JC}$	Junction to Case Thermal Resistance [KF]			3.3	°C/W
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		
T_{J},T_{STG}	Operating and Storage Junction Temperature Range	-55		150 300 °C	
T _L	Soldering Temperature for 10 Seconds (1.6mm from case)				
10/	Doolsons Weight		0.07		OZ
W_{T}	Package Weight		1.2		g
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in·lbf
				1.1	N·m

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	500			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250	μΑ	0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	$V_{GS} = 10V, I_D = 7A$		0.33	0.39	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.5 \text{mA}$	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	GS - VDS, ID - 0.5IIIA		-10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ $T_{J} = 25^{\circ}C$			250	μA
		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μΛ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

T_J = 25°C unless otherwise specified


Symbol	Parameter 1	Test Conditions	Max	Linit		
			Min	Тур	IVIAX	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 7A$		11		S
C _{iss}	Input Capacitance) - 0\/ \/ - 05\/		2250		
C_{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		30		
C _{oss}	Output Capacitance			240		
$C_{o(cr)} \textcircled{4}$	Effective Output Capacitance, Charge Related	\\ -0\\ \\ -0\\ \\ -0\\ +0.222\\		140		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		70		
Q _g	Total Gate Charge	V 04:40V 1 74		55		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 7A,$		13		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		26		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		10		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 7A		12		ne
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 10\Omega^{\textcircled{6}}, V_{GG} = 15V$		26		ns
t _f	Current Fall Time	Ī		8		

Source-Drain Diode Characteristics

Symbol	Parameter		Test Conditions		Min	Тур	Max	Unit
	Continuous Source Current (Body Diode)	K		G TITE			15	A
l I _s		KF	MOSFET symbol showing the				6.2	
	Pulsed Source Current (Body Diode) (1)	K	integral reverse p-n junction diode (body diode)				45	
Ism		KF	(body diode) os	ós			18.6	
V _{SD}	Diode Forward Voltage ^③		I _{SD} = 7A, T _J = 25°			1.0	V	
,	Reverse Recovery Time			T _J = 25°C			190	20
t _{rr}				T _J = 125°C			340	ns
	Reverse Recovery Charge		$I_{SD} = 7A^{\textcircled{3}}$ $V_{DD} = 100V$ $di_{SD}/dt = 100A/\mu s$	T _J = 25°C		0.54		μC
Q _{rr}				T _J = 125°C		1.27		μΟ
	Reverse Recovery Current		SD.	T _J = 25°C		5.9		Α
l'rrm				T _J = 125°C		7.9		A
dv/dt	Peak Recovery dv/dt		$I_{SD} \le 7A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 333V$, $T_{J} = 125^{\circ}C$				20	V/ns
dv/dt] 20	V/fis

- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 12.45mH, $R_G = 25\Omega$, $I_{AS} = 7A$.
- \bigcirc Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- \bigcirc C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
- (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -5.22E-8/ V_{DS} ^2 + 1.21E-8/ V_{DS} + 3.48E-11.
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

-(0.70)

16.07 15.67

1 47 MAX

0.90 0.70

10.05 9.45

Drain

Source

1.77 (.070) 3-Plcs 1.15 (.045)

14.73 (.580) 12.70 (.500)

1.01 (.040) 3-Pics 0.83 (.033)

2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190)

2.92 (.115) 2.04 (.080)

Dimensions in Millimeters and (Inches)