

RADIATION HARDENED LOW POWER NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/391

DESCRIPTION

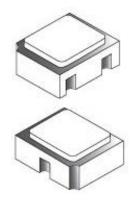
This NPN ceramic surface mount device is RAD hard qualified for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent to JEDEC registered 2N3700.
- RHA level JAN qualifications per MIL-PRF-19500/391 (see part nomenclature for all options).

APPLICATIONS / BENEFITS


- Ceramic UB surface mount package.
- Lightweight.
- Low power.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25 \,^{\circ}C$ unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	$T_{\rm J}$ and $T_{\rm STG}$	-65 to +200	°C
Thermal Impedance Junction-to-Ambient	R _{OJA}	325	°C/W
Thermal Impedance Junction-to-Case	R _{ØJSP}	90	°C/W
Collector-Emitter Voltage	V _{CEO}	80	V
Collector-Base Voltage	V _{CBO}	140	V
Emitter-Base Voltage	V _{EBO}	7.0	V
Collector Current	Ι _C	1.0	Α
Total Power Dissipation: $@ T_A = +25 °C^{(1)}$	PD	0.5	W

<u>Notes</u>: 1. Derate linearly 6.6 mW/°C for $T_A \ge +25$ °C.

<u>Qualified Levels</u>: JANSM, JANSD, JANSP, JANSL, and JANSR

UB Package

Also available in:

TO-18 (TO-206AA) (leaded) JANS 2N3700

TO-39 (TO-205AD)

(leaded) JANS_2N3019, 2N3019S

TO-46 (TO-206AB) (leaded) JANS 2N3057A

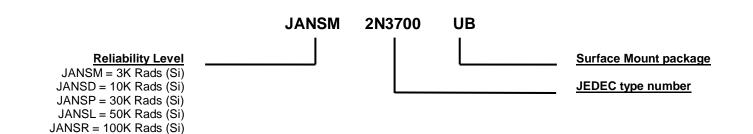
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID, and serial number.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

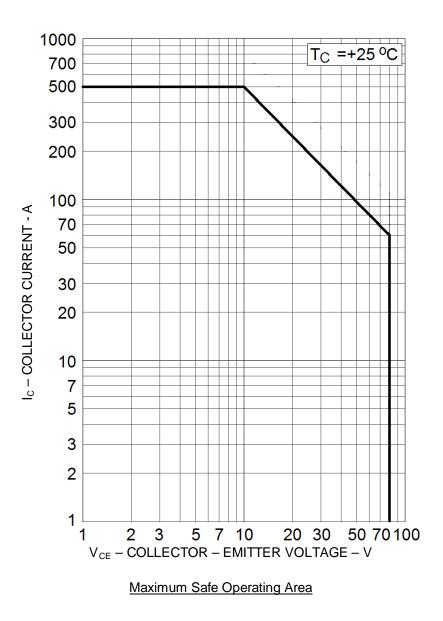
	SYMBOLS & DEFINITIONS					
Symbol	Definition					
f	frequency					
I _B	Base current (dc)					
Ι _Ε	Emitter current (dc)					
T _A	Ambient temperature					
Tc	Case temperature					
V _{CB}	Collector to base voltage (dc)					
V _{CE}	Collector to emitter voltage (dc)					
V _{EB}	Emitter to base voltage (dc)					

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
OFF CHARACTERTICS			L		
Collector-Emitter Breakdown Current $I_{C} = 30 \text{ mA}$	V _{(BR)CEO}	80		V	
Collector-Base Cutoff Current $V_{CB} = 140 V$	I _{CBO}		10	μA	
Emitter-Base Cutoff Current $V_{EB} = 7 V$	I _{EBO1}		10	μA	
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		10	ηA	
Emitter-Base Cutoff Current $V_{EB} = 5.0 V$	I _{EBO2}		10	ηA	
ON CHARACTERISTICS (1)					
Forward-Current Transfer Ratio $I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 1.0 \text{ A}, V_{CE} = 10 \text{ V}$	h _{FE}	100 50 90 50 15	300 300 300		
Collector-Emitter Saturation Voltage $I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$	V _{CE(sat)}		0.2 0.5	V	
Base-Emitter Saturation Voltage $I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$	V _{BE(sat)}		1.1	V	

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C} = 50 \text{ mA}, V_{CE} = 10 \text{ V}, \text{ f} = 20 \text{ MHz}$	h _{fe}	5.0	20	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		12	pF
Input Capacitance V _{EB} = 0.5 V, I_C = 0, 100 kHz ≤ f ≤ 1.0 MHz	C_{ibo}		60	pF


(1) Pulse Test: Pulse Width = 300 μ s, duty cycle ≤ 2.0%.

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests $T_c = 25 \text{ °C}, 1 \text{ cycle}, t = 10 \text{ ms}$	
Test 1	V _{CE} = 10 V
2N3700UB	I _C = 180 mA
Test 2	V _{CE} = 40 V
2N3700UB	I _C = 45 mA
Test 3	V _{CE} = 80 V
2N3700UB	I _C = 22.5 mA

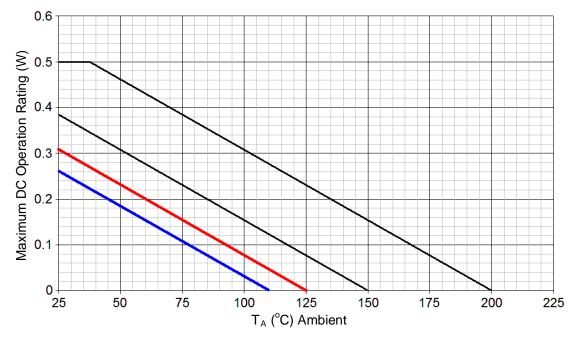
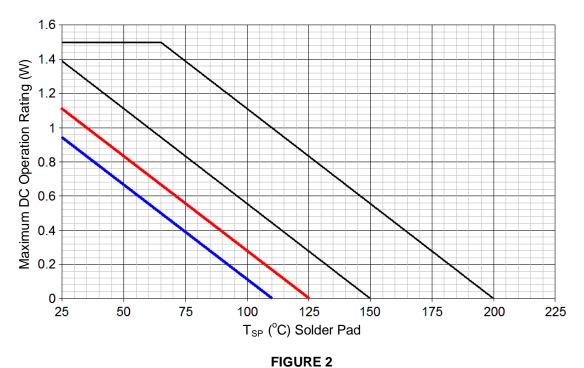
ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

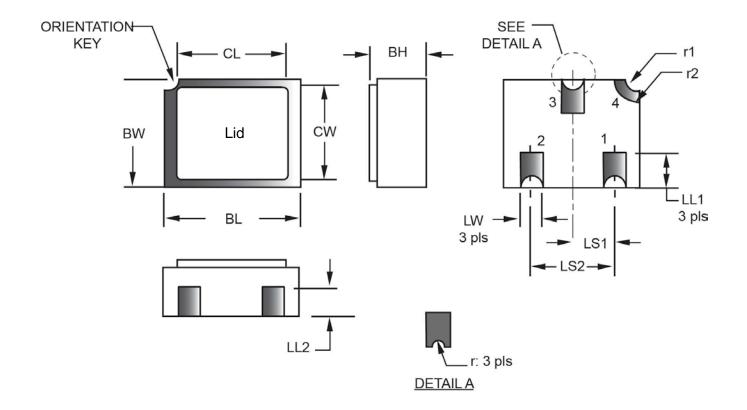
POST RADIATION ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Collector to Base Cutoff Current $V_{CB} = 140 V$	I _{CBO}		20	μA	
Emitter to Base Cutoff Current $V_{EB} = 7 V$	I _{EBO}		20	μA	
Collector to Emitter Breakdown Voltage $I_{C} = 30 \text{ mA}$	V _{(BR)CEO}	80		V	
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		20	ηA	
Emitter-Base Cutoff Current $V_{EB} = 5.0 V$	I _{EBO}		20	ηA	
Forward-Current Transfer Ratio ⁽²⁾ $I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V}$		[50]	300		
$I_{\rm C}$ = 0.1 mA, $V_{\rm CE}$ = 10 V		[25]	300		
$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	[h _{FE}]	[45]			
$I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$		[25]	300		
I _C = 1 A, V _{CE} = 10 V		[7.5]			
Collector-Emitter Saturation Voltage $I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$	V _{CE(sat)}		0.23 0.58	V	
Base-Emitter Saturation Voltage $I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$	$V_{BE(sat)}$		1.27	V	

(2) See method 1019 of MIL-STD-750 for how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the pre- and postradiation h_{FE} . Notice the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

GRAPHS


FIGURE 1 Temperature-Power Derating (R_{OJA})

<u>Temperature-Power Derating ($R_{\Theta JSP}$)</u>

PACKAGE DIMENSIONS

Symbol	Dimensions					Dimensions					
	Inch		Millimeters		Note	Symbol	Inch		Millimeters		Note
-	Min	Max	Min	Max		-	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42		LS ₁	.036	.040	.091	1.02	
BL	.115	.128	2.92	3.25		LS ₂	.071	.079	1.81	2.01	
BW	.085	.108	2.16	2.74		LW	.016	.024	0.41	0.61	
CL		.128		3.25		r		.008		.203	
CW		.108		2.74		r 1		.012		.305	
LL ₁	.022	.038	0.56	0.96		r ₂		.022		.559	
LL ₂	.017	.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Downloaded from Arrow.com.