

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/592

Qualified Levels: JAN, JANTX, and JANTXV

This family of switching transistors is military qualified up to the JANTXV level for high-reliability applications. These devices are also available in a low profile U surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

FEATURES

- JEDEC registered 2N7224, 2N7225, 2N7227 and 2N7228 number series.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/592.
 (See <u>part nomenclature</u> for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ T_A = +25°C unless otherwise stated

Parameters / Test Cond	Symbol	Value	Unit	
Operating & Storage Junction Temperature Range		T _J & T _{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case		Rejc	0.83	°C/W
	@ $T_A = +25 ^{\circ}C$ @ $T_C = +25 ^{\circ}C^{(1)}$	P _T	4 150	W
Gate-Source Voltage, dc		V_{GS}	± 20	V
Drain Current, dc @ T _C = +25 °C ⁽²⁾	2N7224 2N7225 2N7227 2N7228	I _{D1}	34.0 27.4 14.0 12.0	A
Drain Current, dc @ T _C = +100 °C ⁽²⁾	2N7224 2N7225 2N7227 2N7228	I _{D2}	21 17 9 8	A
Off-State Current (Peak Total Value) (5	2N7224 2N7225 2N7227 2N7228	I _{DM}	136 110 56 48	A (pk)
Source Current	2N7224 2N7225 2N7227 2N7228	I _S	34.0 27.4 14.0 12.0	A

NOTES:

- 1. Derated linearly by 1.2 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.
- 2. The following formula derives the maximum theoretical ID limit. ID is limited by package and internal wires and may also be limited by pin diameter:

$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

TO-254AA Package

Also available in:

U (SMD-1 or TO-267AB) package

(surface mount)
2N7224U & 2N7228U

MSC – Lawrence 6 Lake Street,

Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, and polarity symbol.
- WEIGHT: 6.5 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
I _F	Forward current					
R_G	Gate drive impedance					
V_{DD}	Drain supply voltage					
V_{DS}	Drain source voltage, dc					
V_{GS}	Gate source voltage, dc					

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS		-		•	
Drain-Source Breakdown Voltage					
$V_{GS} = 0 \text{ V}, I_{D} = 1.0 \text{ mA}$	2N7224 2N7225 2N7227 2N7228	V _{(BR)DSS}	100 200 400 500		V
Gate-Source Voltage (Threshold) $ \begin{array}{l} V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA \\ V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA, \ T_J = +125 ^{\circ}C \\ V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA, \ T_J = -55 ^{\circ}C \\ \end{array} $		$\begin{matrix} V_{GS(th)1} \\ V_{GS(th)2} \\ V_{GS(th)3} \end{matrix}$	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125^{\circ}\text{C}$		I _{GSS1} I _{GSS2}		±100 ±200	nA
$\begin{array}{l} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 80 \text{ V} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 160 \text{ V} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 320 \text{ V} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 400 \text{ V} \end{array}$	2N7224 2N7225 2N7227 2N7228	I _{DSS1}		25	μΑ
$\begin{array}{l} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V, V}_{\text{DS}} = 80 \text{ V, T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V, V}_{\text{DS}} = 160 \text{ V, T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V, V}_{\text{DS}} = 320 \text{ V, T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V, V}_{\text{DS}} = 400 \text{ V, T}_{\text{J}} = +125 \text{ °C} \\ \end{array}$	2N7224 2N7225 2N7227 2N7228	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 21.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 17.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A pulsed}$	2N7224 2N7225 2N7227 2N7228	r _{DS(on)1}		0.070 0.100 0.315 0.415	Ω
Static Drain-Source On-State Resistance V_{GS} = 10 V, I_D = 34.0 A pulsed V_{GS} = 10 V, I_D = 27.4 A pulsed V_{GS} = 10 V, I_D = 14.0 A pulsed V_{GS} = 10 V, I_D = 12.0 A pulsed	2N7224 2N7225 2N7227 2N7228	r _{DS(on)2}		0.081 0.105 0.415 0.515	Ω
Static Drain-Source On-State Resistance T_J = +125°C V_{GS} = 10 V, I_D = 21.0 A pulsed V_{GS} = 10 V, I_D = 17.0 A pulsed V_{GS} = 10 V, I_D = 9.0 A pulsed V_{GS} = 10 V, I_D = 8.0 A pulsed	2N7224 2N7225 2N7227 2N7228	r _{DS(on)3}		0.11 0.17 0.68 0.90	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 34.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 27.4 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N7224 2N7225 2N7227 2N7228	V_{SD}		1.8 1.9 1.7 1.7	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

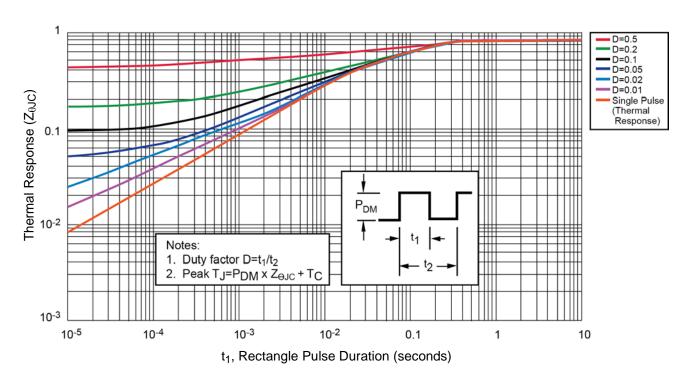
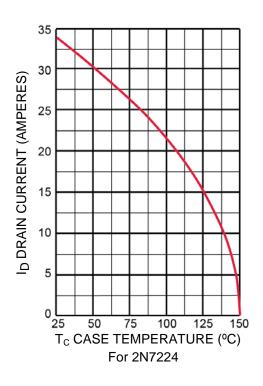
DYNAMIC CHARACTERISTICS

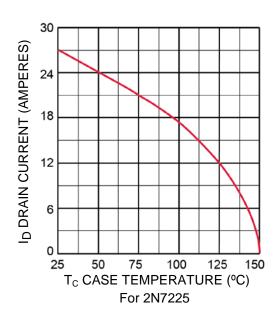
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
On-State Gate Charge $V_{GS} = 10 \text{ V}, I_D = 34.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 27.4 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}, V_{DS} = 50 \text{ V}$	2N7224 2N7225 2N7227 2N7228	$Q_{g(on)}$		125 115 110 120	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 34.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 27.4 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}, V_{DS} = 50 \text{ V}$	2N7224 2N7225 2N7227 2N7228	Q_{gs}		22 22 18 19	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 34.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 27.4 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}, V_{DS} = 50 \text{ V}$	2N7224 2N7225 2N7227 2N7228	Q_{gd}		65 60 65 70	nC

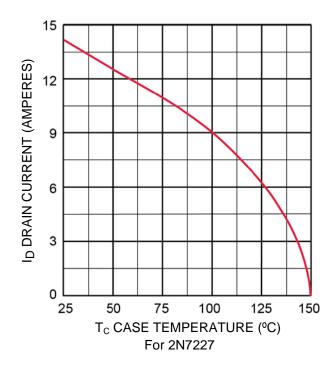
SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	+		35	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	t _{d(on)}		33	113
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Rinse time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	t _r		190	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	۲ŗ		130	113
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Turn-off delay time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	t		170	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	t _{d(off)}		170	113
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Fall time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	t _f		130	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	Ч		130	113
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Diode Reverse Recovery Time					
$di/dt \le 100 \text{ A/}\mu\text{s}, V_{DD} \le 30 \text{ V}, I_F = 34.0 \text{ A}$	2N7224			500	
di/dt ≤ 100 A/µs, V_{DD} ≤ 30 V, I_F = 27.4 A	2N7225	+		950	ns
di/dt ≤ 100 A/µs, V_{DD} ≤ 30 V, I_{F} = 14.0 A	2N7227	t _{rr}		1200	113
di/dt ≤ 100 A/ μ s, V _{DD} ≤ 30 V, I _F = 12.0 A	2N7228			1600	

GRAPHS


FIGURE 1
Thermal Impedance Curves



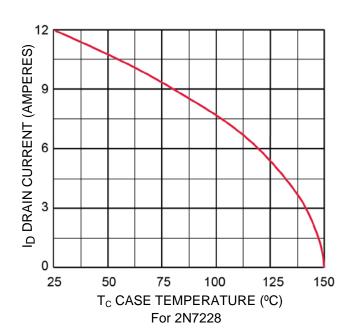
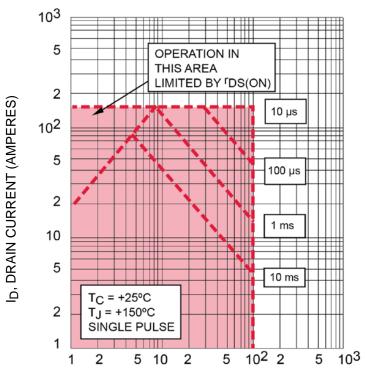
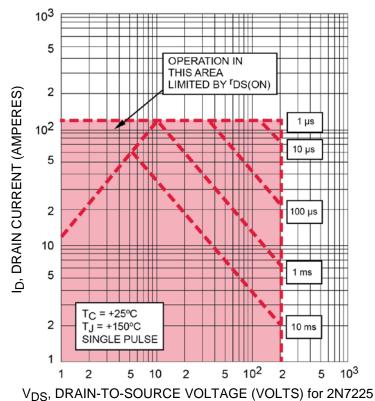

GRAPHS (continued)

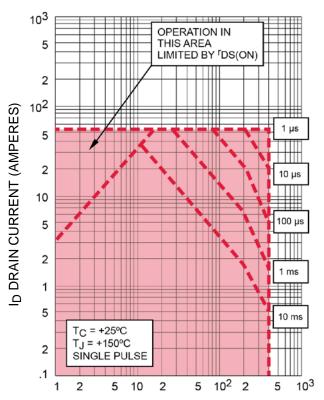
FIGURE 2 - Maximum Drain Current vs Case Temperature Graphs



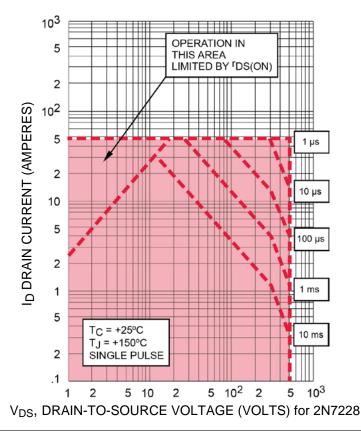


GRAPHS (continued)

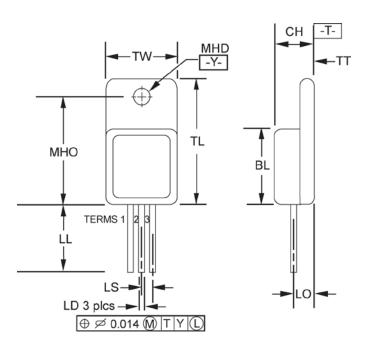
FIGURE 3 - Maximum Safe Operating Area



V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N7224



GRAPHS (continued)



VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N7227

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Glass meniscus included in dimension D and E.
- 4. All terminals are isolated from case.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Ltr	Inch		Millim	Notes	
	Min	Max	Min	Max	
BL	.535	.545	13.59	13.84	
CH	.249	.260	6.32	6.60	
LD	.035	.045	0.89	1.14	
LL	.510	.570	12.95	14.48	
LO	.150 BSC		3.81		
LS	.150 BSC		3.81		
MHD	.139	.149	3.53	3.78	
МНО	.665	.685	16.89	17.40	
TL	.790	.800	20.07	20.32	3, 4
TT	.040	.050	1.02	1.27	
TW	.535	.545	13.59	13.84	3, 4
Term 1	Drain				
Term 2	Source				
Term 3	Gate				