

2N6764T1, 2N6766T1, 2N6768T1 and 2N6770T1

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/543

DESCRIPTION

This family of 2N6764T1, 2N6766T1, 2N6768T1 and 2N6770T1 switching transistors are military qualified up to the JANTXV level for high-reliability applications. These devices are also available in a thru hole TO-204AE metal can package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6764, 2N6766, 2N6768 and 2N6770 number series.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/543. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant versions available (commercial grade only).


APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise stated

Parameters / Test Conditi	ons	Symbol	Value	Unit
Junction & Storage Temperature Range	T _J & T _{stg}	-55 to +150	°C	
Thermal Resistance Junction-to-Case		R _{ejc}	0.83	°C/W
	$\Gamma_{A} = +25 \ ^{\circ}C$ $\Gamma_{C} = +25 \ ^{\circ}C \ ^{(1)}$	Ρτ	4 150	W
Drain-Source Voltage, dc	2N6764T1 2N6766T1 2N6768T1 2N6770T1	V _{DS}	100 200 400 500	V
Gate-Source Voltage, dc		V _{GS}	± 20	V
Drain Current, dc @ T_C = +25 °C ⁽²⁾	2N6764T1 2N6766T1 2N6768T1 2N6770T1	I _{D1}	38.0 30.0 14.0 12.0	A
Drain Current, dc @ T_C = +100 °C ⁽²⁾	2N6764T1 2N6766T1 2N6768T1 2N6770T1	I _{D2}	24.0 19.0 9.0 7.75	A
Off-State Current (Peak Total Value) (3)	2N6764T1 2N6766T1 2N6768T1 2N6770T1	I _{DM}	152 120 56 48	A (pk)
Source Current	2N6764T1 2N6766T1 2N6768T1 2N6770T1	Is	38.0 30.0 14.0 12.0	A

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

TO-254AA Package

Also available in:

TO-204AE (TO-3) package (leaded) 2N6764 & 2N6770

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

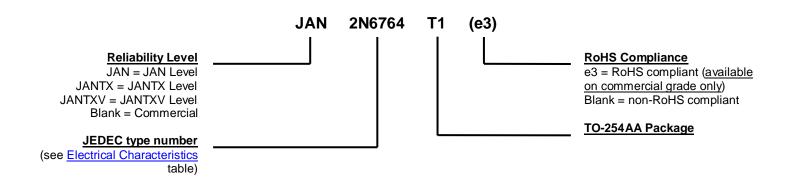
Website:

www.microsemi.com

T4-LDS-0101-1, Rev. 1 (121466)

NOTES: 1. Derate linearly by 1.2 W/°C for $T_c > +25$ °C.

2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:


$$I_{D} = \sqrt{\frac{T_{J}(max) - T_{C}}{R_{\theta JC} \times R_{DS(on)} @ T_{J}(max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MECHANICAL and PACKAGING

- CASE: Nickel plated, hermetically sealed, TO-254AA.
- TERMINALS: Ni plated, copper cored, kovar.
- MARKING: Manufacturers ID, part number, date code, Beo (Beryllium Oxide).
- WEIGHT: 6.5 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
١ _F	Forward current					
R _G	Gate drive impedance					
V _{DD}	Drain supply voltage					
V _{DS}	Drain source voltage, dc					
V _{GS}	Gate source voltage, dc					

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS		-			
Drain-Source Breakdown Voltage					
$V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	$V_{(BR)DSS}$	100 200 400 500		V
$ \begin{array}{l} \mbox{Gate-Source Voltage (Threshold)} \\ V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA \\ V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA, \ T_J = +125 \ ^\circ C \\ V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA, \ T_J = -55 \ ^\circ C \end{array} $		$\begin{array}{c} V_{GS(th)1} \\ V_{GS(th)2} \\ V_{GS(th)3} \end{array}$	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_J = +125 \text{ °C}$		I _{GSS1} I _{GSS2}		±100 ±200	nA
	2N6764T1 2N6766T1 2N6768T1 2N6770T1	I _{DSS1}		25	μΑ
Drain Current $V_{GS} = 0 V, V_{DS} = 100 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 200 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 400 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 500 V, T_J = +125 °C$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	I _{DSS2}		1.0	mA
Drain Current $V_{GS} = 0 V, V_{DS} = 80 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 160 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 320 V, T_J = +125 °C$ $V_{GS} = 0 V, V_{DS} = 400 V, T_J = +125 °C$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	I _{DSS3}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 24.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 19.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 7.75 \text{ A pulsed}$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	r _{DS(on)1}		0.055 0.085 0.3 0.4	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 38.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 30.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	r _{DS(on)2}		0.065 0.09 0.4 0.5	Ω
Static Drain-Source On-State Resistance $T_J = +125 \text{ °C}$ $V_{GS} = 10 \text{ V}, I_D = 24.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 19.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 7.75 \text{ A pulsed}$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	۲ _{DS(on)3}		0.094 0.153 0.66 0.88	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 38.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 30.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	V _{SD}		1.9 1.9 1.7 1.7	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

ELECTRICAL CHARACTERISTICS @ $T_A = +25 \text{ °C}$, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
	2N6764T1 2N6766T1 2N6768T1 2N6770T1	Q _{g(on)}		125 115 110 120	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 38.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 30.0 \text{ A}, V_{DS} = 100 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 200 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}, V_{DS} = 250 \text{ V}$	2N6764T1 2N6766T1 2N6768T1 2N6770T1	Q _{gs}		22 22 18 19	nC
	2N6764T1 2N6766T1 2N6768T1 2N6770T1	Q _{gd}		65 60 65 70	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time				
$I_D = 38.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$ 2N6764T1				
$I_D = 30.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$ 2N6766T1	t _{d(on)}		35	ns
$I_D = 14.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$ 2N6768T1	•a(on)		00	110
$I_D = 12.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$ 2N6770T1				
Rise time				
$I_D = 38.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$ 2N6764T1				
$I_D = 30.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$ 2N6766T1	tr		190	ns
$I_D = 14.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$ 2N6768T1	-1			
$I_D = 12.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$ 2N6770T1				
Turn-off delay time				
$I_D = 38.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$ 2N6764T1				
$I_D = 30.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$ 2N6766T1	t _{d(off)}		170	ns
$I_D = 14.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$ 2N6768T1	^a u(on)			_
$I_D = 12.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$ 2N6770T1				
Fall time				
$I_D = 38.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$ 2N6764T1				
$I_D = 30.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$ 2N6766T1	t _f		130	ns
$I_D = 14.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$ 2N6768T1				
$I_D = 12.0 \text{ A}, V_{GS} = +10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$ 2N6770T1				
Diode Reverse Recovery Time				
$di/dt = 100 \text{ A/}\mu\text{s}, \text{V}_{\text{DD}} \le 30 \text{ V}, \text{I}_{\text{D}} = 38.0 \text{ A}$ 2N6764T1			500	
$di/dt = 100 \text{ A/}\mu\text{s}, \text{ V}_{\text{DD}} \le 30 \text{ V}, \text{ I}_{\text{D}} = 30.0 \text{ A}$ $2N6766T1$	t _{rr}		950	ns
			1200 1600	
$u_1/u_1 = 100 A/\mu s, v_{DD} = 30 v, T_D = 12.0 A$ 2N077011			1000	

2N6764T1, 2N6766T1, 2N6768T1 and 2N6770T1

GRAPHS

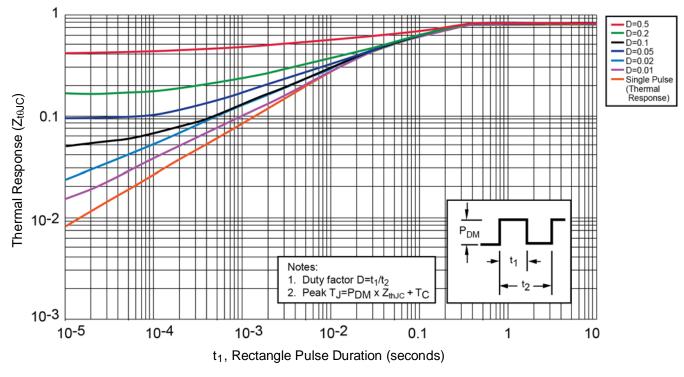


FIGURE 1 Thermal Response Curves

2N6764T1, 2N6766T1, 2N6768T1 and 2N6770T1

GRAPHS (continued)

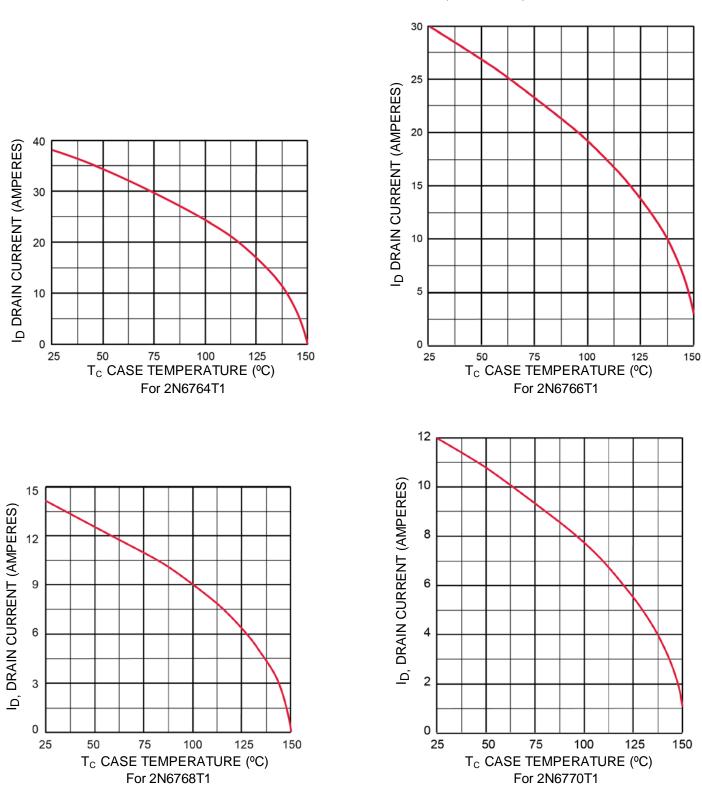
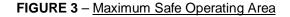
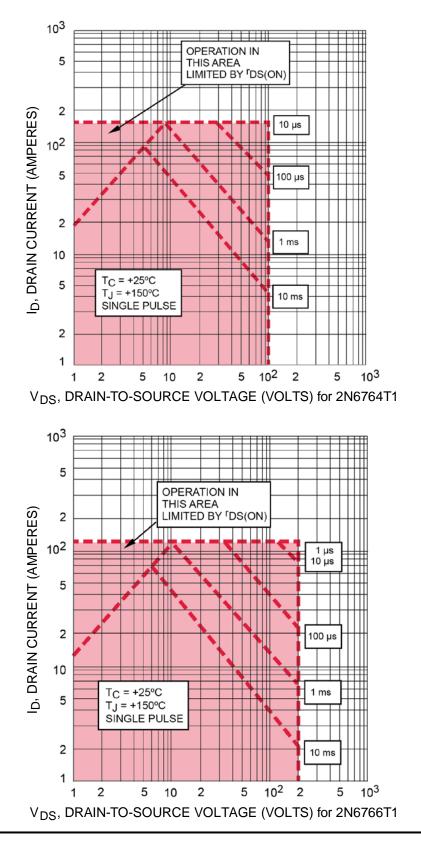
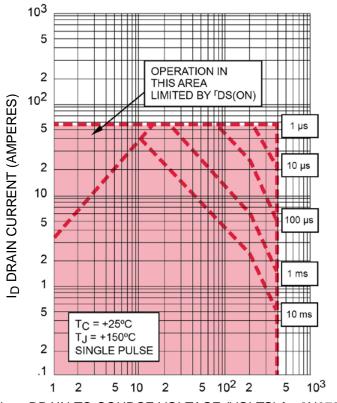
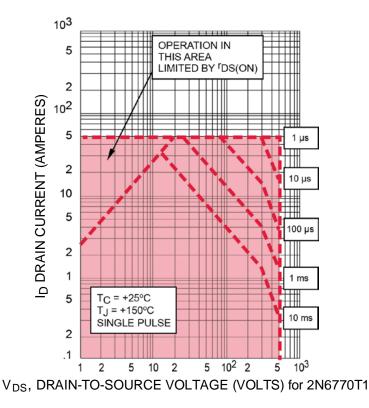




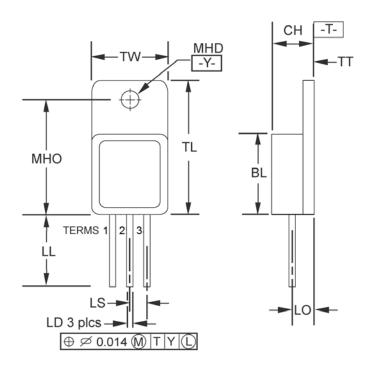
FIGURE 2 – Maximum Drain Current vs Case Temperature Graphs

GRAPHS (continued)




T4-LDS-0101-1, Rev. 1 (121466)

GRAPHS (continued)


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N6768T1

T4-LDS-0101-1, Rev. 1 (121466)

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Protrusion thickness of ceramic eyelets included in dimension LL.
- 4. All terminals are isolated from case.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

	Dimensions				
Ltr	Inch		Millim	Notes	
	Min	Max	Min	Max	
BL	0.535	0.545	13.59	13.84	
СН	0.249	0.260	6.32	6.60	
LD	0.035	0.045	0.89	1.14	
LL	0.510	0.570	12.95	14.48	3,4
LO	0.150 BSC		3.81 BSC		
LS	0.150 BSC		3.81 BSC		
MHD	0.139	0.149	3.53 3.78		
МНО	0.665	0.685	16.89	17.40	
TL	0.790	0.800	20.07	20.32	
TT	0.040	0.050	1.02	1.27	
TW	0.535	0.545	13.59	13.84	
Term 1	Drain				
Term 2	Source				
Term 3	Gate				