25LC080C/25LC080D/25LC160C/ 25LC160D/25LC320A/25LC640AI 25LC128/25LC256

8K-256K SPI Serial EEPROM High Temp Family Data Sheet

Features

- Maximum Clock: 5 MHz
- Low-Power CMOS Technology:
- Write current: 5 mA at 5.5 V (maximum)
- Read current: 5 mA at $5.5 \mathrm{~V}, 5 \mathrm{MHz}$
- Standby current: $10 \mu \mathrm{~A}$ at 5.5 V
- $1,024 \times 8$ through $32,768 \times 8$-bit Organization
- Byte and Page-Level Write Operations
- Self-Timed Erase and Write Cycles (6 ms maximum)
- Block Write Protection:
- Protect none, 1/4, 1/2 or all of array
- Built-in Write Protection:
- Power-on/off data protection circuitry
- Write enable latch
- Write-protect pin
- Sequential Read
- High Reliability:
- Endurance: >1,000,000 erase/write cycles
- Data retention: >200 years
- ESD protection: >4000V
- Temperature Range Supported:
- Extended (H): $\quad-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- RoHS Compliant
- Automotive AECQ-100 Qualified

Description

Microchip Technology Inc. 25LCXXX ${ }^{(1)}$ devices are Mid-density 8- through 256-Kbit Serial Electrically Erasable PROMs (EEPROM). The devices are organized in blocks of x8-bit memory and support the Serial Peripheral Interface (SPI) compatible serial bus architecture. Byte-level and page-level functions are supported. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select ($\overline{\mathrm{CS}}$) input.

Communication to the device can be paused via the hold pin ($\overline{\mathrm{HOLD}}$). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts.

Note 1: 25LCXXX is used in this document as a generic part number for the 25LC080C/ 25LC080D/25LC160C/25LC160D/ 25LC320A/25LC640A/25LC128/ 25LC256 devices.

Packages

- 8-Lead SOIC

Package Types (not to scale)

Pin Function Table

Name	Function
$\overline{\mathrm{CS}}$	Chip Select Input
SO	Serial Data Output
$\overline{\mathrm{WP}}$	Write-Protect
Vss	Ground
SI	Serial Data Input
SCK	Serial Clock Input
$\overline{\text { HOLD }}$	Hold Input
Vcc	Supply Voltage

DEVICE SELECTION TABLE

Part Number	Density (bits)	Organization	Vcc Range	Max. Speed (MHz)	Page Size (Bytes)	Temp. Range	Package
25LC080C	8 K	$1,024 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	16	H	SN
25LC080D	8 K	$1,024 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	32	H	SN
25LC160C	16 K	$2,048 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	16	H	SN
25LC160D	16 K	$2,048 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	32	H	SN
25LC320A	32 K	$4,096 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	32	H	SN
25 LC 640 A	64 K	$8,192 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	32	H	SN
25 LC 128	128 K	$16,384 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	64	H	SN
25 LC 256	256 K	$32,768 \times 8$	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	5	64	H	SN

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings ${ }^{(\dagger)}$Vcc.6.5 V
All inputs and outputs w.r.t. Vss

\qquad
-0.6 V to $\mathrm{Vcc}+1.0 \mathrm{~V}$
Storage temperature $-65^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$s. $40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}^{(1)}$ ESD protection on all pins 4 kV

Note 1: AEC-Q100 reliability testing for devices intended to operate at $+150^{\circ} \mathrm{C}$ is 1,000 hours. Any design in which the total operating time between $+125^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$ will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
\dagger NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS			Electrical Characteristics: Extended (H): $\quad T A=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			$+150^{\circ} \mathrm{C} \quad \mathrm{Vcc}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Test Conditions
D001	VIH1	High-Level Input Voltage	0.7 Vcc	Vcc + 1	V	
D002	VIL1	Low-Level Input Voltage	-0.3	0.3 Vcc	V	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$
D003	VIL2		-0.3	0.2Vcc	V	$\mathrm{Vcc}<2.7 \mathrm{~V}$
D004	Vol1	Low-Level Output Voltage	-	0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
D005	Vol2		-	0.2	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
D006	VOH	High-Level Output Voltage	Vcc-0.5	-	V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
D007	ILI	Input Leakage Current	-	± 2	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=\mathrm{Vcc}, \mathrm{VIN}=\mathrm{Vss}$ OR Vcc
D008	ILO	Output Leakage Current	-	± 2	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=\mathrm{Vcc}$, Vout $=$ Vss OR Vcc
D009	CINT	Internal Capacitance (all inputs and outputs)	-	7	pF	$\begin{aligned} & \mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{CLK}=1.0 \mathrm{MHz}, \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \text { (Note 1) } \end{aligned}$
D010	Icc Read	Operating Current	-	5	mA	$\begin{aligned} & \text { Vcc }=5.5 \mathrm{~V} ; \text { FCLK }=5.0 \mathrm{MHz} ; \\ & \text { SO = Open } \end{aligned}$
			-	2.5	mA	$\begin{aligned} & \text { VCC }=2.5 \mathrm{~V} ; \text { FCLK }=3.0 \mathrm{MHz} ; \\ & \text { SO = Open } \end{aligned}$
D011	ICC Write	Operating Current	-	5	mA	$\mathrm{Vcc}=5.5 \mathrm{~V}$
			-	3	mA	$\mathrm{Vcc}=2.5 \mathrm{~V}$
D012	Iccs	Standby Current	-	10	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}=\mathrm{Vcc}=5.5 \mathrm{~V},$ Inputs tied to Vcc or Vss, $+150^{\circ} \mathrm{C}$

Note 1: This parameter is periodically sampled and not 100% tested.

TABLE 1-2: AC CHARACTERISTICS

AC CHARACTERISTICS			Electrical Characteristics: Extended (H): $\quad T A=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			$\text { to }+150^{\circ} \mathrm{C} \quad \mathrm{Vcc}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Test Conditions
1	FCLK	Clock Frequency	-	5	MHz	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			-	3	MHz	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
2	Tcss	$\overline{\mathrm{CS}}$ Setup Time	100	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			150	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
3	Tcsh	$\overline{\mathrm{CS}}$ Hold Time	200	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			250	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
4	Tcsd	$\overline{\text { CS }}$ Disable Time	50	-	ns	-
5	Tsu	Data Setup Time	20	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			30	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
6	THD	Data Hold Time	40	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			50	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
7	TR	CLK Rise Time	-	2	$\mu \mathrm{s}$	Note 1
8	TF	CLK Fall Time	-	2	$\mu \mathrm{s}$	Note 1
9	THI	Clock High Time	100	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			150	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
10	TLO	Clock Low Time	100	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			150	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
11	Tcld	Clock Delay Time	50	-	ns	
12	TCLE	Clock Enable Time	50	-	ns	
13	TV	Output Valid from Clock Low	-	100	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			-	160	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
14	Tно	Output Hold Time	0	-	ns	Note 1
15	TDIS	Output Disable Time	-	80	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (Note 1)
			-	160	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$ (Note 1)
16	THs	$\overline{\text { HOLD }}$ Setup Time	40	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			80	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
17	THH	$\overline{\text { HOLD }}$ Hold Time	40	-	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			80	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
18	THz	HOLD Low to Output High Z	-	60	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (Note 1)
			-	160	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$ (Note 1)
19	THv	$\overline{\text { HOLD }}$ High to Output Valid	-	60	ns	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			-	160	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
20	Twc	Internal Write Cycle Time	-	6	ms	Note 2
21		Endurance	1,000,000	-	E/W Cycles	Page mode, $25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.5 \mathrm{~V}$ (Note 3)

Note 1: This parameter is periodically sampled and not 100% tested.
2: Twc begins on the rising edge of $\overline{C S}$ after a valid write sequence and ends when the internal write cycle is complete.
3: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance ${ }^{\text {TM }}$ Model which can be obtained from our website: www.microchip.com.

TABLE 1-3:

AC Waveform	
VLO $=0.2 \mathrm{~V}$	
$\mathrm{VHI}=\mathrm{VCC}-0.2 \mathrm{~V}$	Note 1
$\mathrm{VHI}=4.0 \mathrm{~V}$	Note 2
$\mathrm{CL}=50 \mathrm{pF}$	
Timing Measurement Reference Level	
Input	0.5 Vcc
Output	0.5 Vcc

Note 1: For Vcc $\leq 4.0 \mathrm{~V}$
2: For Vcc $>4.0 \mathrm{~V}$

FIGURE 1-1: HOLD TIMING

FIGURE 1-2: SERIAL INPUT TIMING

25LC080C/25LC080D/25LC160C/25LC160D/25LC320A/25LC640A/ 25LC128/25LC256

FIGURE 1-3: SERIAL OUTPUT TIMING

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.
TABLE 2-1: PIN FUNCTION TABLE

Name	Pin Number	Function
$\overline{\mathrm{CS}}$	1	Chip Select Input
SO	2	Serial Data Output
$\overline{\mathrm{WP}}$	3	Write-Protect Pin
VSS	4	Ground
SI	5	Serial Data Input
SCK	6	Serial Clock Input
$\overline{\text { HOLD }}$	7	Hold Input
Vcc	8	Supply Voltage

2.1 Chip Select ($\overline{\mathrm{CS}}$)

A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. However, a programming cycle which is already initiated or in progress will be completed, regardless of the $\overline{\mathrm{CS}}$ input signal. If $\overline{\mathrm{CS}}$ is brought high during a program cycle, the device will go into Standby mode as soon as the programming cycle is complete. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. A low-to-high transition on $\overline{\mathrm{CS}}$ after a valid write sequence initiates an internal write cycle. After powerup, a low level on $\overline{\mathrm{CS}}$ is required prior to any sequence being initiated.

2.2 Serial Output (SO)

The SO pin is used to transfer data out of the 25LCXXX. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock.

2.3 Write-Protect ($\overline{\mathrm{WP}}$)

This pin is used in conjunction with the WPEN bit in the STATUS register to prohibit writes to the nonvolatile bits in the STATUS register. When $\overline{W P}$ is low and WPEN is high, writing to the nonvolatile bits in the STATUS register is disabled. All other operations function normally. When $\overline{W P}$ is high, all functions, including writes to the nonvolatile bits in the STATUS register operate normally. If the WPEN bit is set, $\overline{W P}$ low during a STATUS register write sequence will disable writing to the STATUS register. If an internal write cycle has already begun, $\overline{\mathrm{WP}}$ going low will have no effect on the write.

The $\overline{W P}$ pin function is blocked when the WPEN bit in the STATUS register is low. This allows the user to install the 25LCXXX in a system with WP pin grounded and still be able to write to the STATUS register. The $\overline{\text { WP pin functions will be enabled when the WPEN bit is }}$ set high.

2.4 Serial Input (SI)

The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock.

2.5 Serial Clock (SCK)

The SCK is used to synchronize the communication between a master and the 25LCXXX. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input.

2.6 Hold (HOLD)

The $\overline{\text { HOLD }}$ pin is used to suspend transmission to the 25LCXXX while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the $\overline{\mathrm{HOLD}}$ pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-tolow transition. The 25LCXXX must remain selected during this sequence. The SI, SCK and SO pins are in a high-impedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Lowering the HOLD line at any time will tri-state the SO line.

3.0 FUNCTIONAL DESCRIPTION

3.1 Principles of Operation

The 25LCXXX are Mid-Density Serial EEPROMs designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PIC ${ }^{\circledR}$ microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol.
The 25LCXXX contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The $\overline{\mathrm{CS}}$ pin must be low and the $\overline{\text { HOLD }}$ pin must be high for the entire operation.
Table 3-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses, and data are transferred Most Significant bit (MSb) first, Least Significant bit (LSb) last.

Data (SI) is sampled on the first rising edge of SCK after $\overline{\mathrm{CS}}$ goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the $\overline{\mathrm{HOLD}}$ input and place the 25LCXXX in 'HOLD' mode. After releasing the HOLD pin, operation will resume from the point when the $\overline{\text { HOLD }}$ was asserted.

Block Diagram

TABLE 3-1: INSTRUCTION SET

Instruction Name	Instruction Format	Description
READ	00000011	Read data from memory array beginning at selected address
WRITE	00000010	Write data to memory array beginning at selected address
WRDI	00000100	Reset the write enable latch (disable write operations)
WREN	00000110	Set the write enable latch (enable write operations)
RDSR	00000101	Read STATUS register
WRSR	00000001	Write STATUS register

3.2 Read Sequence

The device is selected by pulling $\overline{\mathrm{CS}}$ low. The 8 -bit READ instruction is transmitted to the 25LCXXX followed by the 16-bit address. After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. The data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal Address Pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached, the address counter rolls over to address 0000 h allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the $\overline{\mathrm{CS}}$ pin (Figure 3-1).

3.3 Write Sequence

Prior to any attempt to write data to the 25LCXXX, the write enable latch must be set by issuing the WREN instruction (Figure 3-4). This is done by setting $\overline{\mathrm{CS}}$ low and then clocking out the proper instruction into the 25LCXXX. After all eight bits of the instruction are transmitted, the $\overline{\mathrm{CS}}$ must be brought high to set the write enable latch. If the write operation is initiated immediately after the WREN instruction without $\overline{\mathrm{CS}}$ being brought high, the data will not be written to the array because the write enable latch will not have been properly set.

Once the write enable latch is set, the user may proceed by setting the $\overline{\mathrm{CS}}$ low, issuing a WRITE instruction, followed by the 16-bit address, and then the data to be written. Depending upon the density, a page of data that ranges from 16 bytes to 64 bytes can be sent to the device before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page.

Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and, end at addresses that are integer multiples of page size -1 . If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

For the data to be actually written to the array, the $\overline{\mathrm{CS}}$ must be brought high after the Least Significant bit (D0) of the $n^{\text {th }}$ data byte has been clocked in. If $\overline{\mathrm{CS}}$ is brought high at any other time, the write operation will not be completed. Refer to Figure 3-2 and Figure 3-3 for more detailed illustrations on the byte write sequence and the page write sequence, respectively. While the write is in progress, the STATUS register may be read to check the status of the WPEN, WIP, WEL, BP1 and BP0 bits (Figure 3-6). A read attempt of a memory array location will not be possible during a write cycle. When the write cycle is completed, the write enable latch is reset.

FIGURE 3-1: READ SEQUENCE

25LC080C/25LC080D/25LC160C/25LC160D/25LC320A/25LC640A/ 25LC128/25LC256

FIGURE 3-2: BYTE WRITE SEQUENCE

FIGURE 3-3: PAGE WRITE SEQUENCE
$\overline{\mathrm{CS}}$

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

$\overline{\mathrm{CS}}$ \qquad

3.4 Write Enable (WREN) and Write Disable (WRDI)

The 25LCXXX contains a write enable latch. See Table 5-1 for the write-protect functionality matrix. This latch must be set before any write operation will be completed internally. The WREN instruction will set the latch, and the WRDI will reset the latch.

The following is a list of conditions under which the write enable latch will be reset:

- Power-up
- WRDI instruction successfully executed
- WRSR instruction successfully executed
- WRITE instruction successfully executed

FIGURE 3-4: WRITE ENABLE SEQUENCE (WREN)

FIGURE 3-5: WRITE DISABLE SEQUENCE (WRDI)

25LC080C/25LC080D/25LC160C/25LC160D/25LC320A/25LC640A/ 25LC128/25LC256

3.5 Read STATUS Register Instruction (RDSR)

The Read STATUS Register instruction (RDSR) provides access to the STATUS register. The STATUS register may be read at any time, even during a write cycle. The STATUS register is formatted as seen in Table 3-2.

TABLE 3-2: STATUS REGISTER

7	6	5	4	3	2	1	0
W/R	-	-	-	W/R	W/R	R	R
WPEN	X	X	X	BP1	BP0	WEL	WIP

The Write-In-Process (WIP) bit indicates whether the 25LCXXX is busy with a write operation. When set to a ' 1 ', a write is in progress, when set to a ' 0 ', no write is in progress. This bit is read-only.

The Write Enable Latch (WEL) bit indicates the status of the write enable latch and is read-only. When set to a ' 1 ', the latch allows writes to the array, when set to a ' 0 ', the latch prohibits writes to the array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the STATUS register. These commands are shown in Figure 3-4 and Figure 3-5.
The Block Protection (BPO and BP1) bits indicate which blocks are currently write-protected. These bits are set by the user issuing the WRSR instruction. These bits are nonvolatile, and are shown in Table 3-3. See Figure 3-6 for the RDSR timing sequence.

FIGURE 3-6: READ STATUS REGISTER TIMING SEQUENCE (RDSR)

3.6 Write Status Register Instruction (WRSR)

The Write STATUS Register instruction (WRSR) allows the user to write to the nonvolatile bits in the STATUS register as shown in Table 3-2. The user is able to select one of four levels of protection for the array by writing to the appropriate bits in the STATUS register. The array is divided up into four segments. The user has the ability to write-protect none, one, two or all four of the segments of the array. The partitioning is controlled as shown in Table 3-3.

The Write-Protect Enable (WPEN) bit is a nonvolatile bit that is available as an enable bit for the $\overline{W P}$ pin. The Write-Protect ($\overline{\mathrm{WP}}$) pin and the Write-Protect Enable (WPEN) bit in the STATUS register control the programmable hardware write-protect feature. Hardware write protection is enabled when $\overline{W P}$ pin is low and the WPEN bit is high. Hardware write protection is disabled when either the $\overline{\mathrm{WP}}$ pin is high or the WPEN bit is low. When the chip is hardware writeprotected, only writes to nonvolatile bits in the STATUS register are disabled. See Table 5-1 for a matrix of functionality on the WPEN bit. See Figure 3-7 for the WRSR timing sequence.

TABLE 3-3: ARRAY PROTECTION

BP1	BP0	Array Addresses Write-Protected	Array Addresses Unprotected
0	0	None	All
0	1	Upper $1 / 4$	Lower $3 / 4$
1	0	Upper $1 / 2$	Lower $1 / 2$
1	1	All	None

TABLE 3-4: ARRAY PROTECTED ADDRESS LOCATIONS

Density	Upper 1/4	Upper 1/2	All
8K	300h-3FFh	200h-3FFh	000h-3FFh
16K	600h-7FFh	400h-7FFh	000h-7FFh
32K	C00h-FFFh	800h-FFFh	000h-FFFh
64K	1800h-1FFFh	1000h-1FFFh	0000h-1FFFh
128K	3000h-3FFFh	2000h-3FFFh	0000h-3FFFh
256K	6000h-7FFFh	4000h-7FFFh	0000h-7FFFh

FIGURE 3-7: WRITE STATUS REGISTER TIMING SEQUENCE (WRSR)

4.0 DATA PROTECTION

The following protection has been implemented to prevent inadvertent writes to the array:

- The write enable latch is reset on power-up
- A write enable instruction must be issued to set the write enable latch
- After a byte write, page write or STATUS register write, the write enable latch is reset
- $\overline{\mathrm{CS}}$ must be set high after the proper number of clock cycles to start an internal write cycle
- Access to the array during an internal write cycle is ignored and programming is continued

5.0 POWER-ON STATE

The 25LCXXX powers on in the following state:

- The device is in low-power Standby mode ($\overline{\mathrm{CS}}=1$)
- The write enable latch is reset
- SO is in high-impedance state
- A high-to-low-level transition on $\overline{\mathrm{CS}}$ is required to enter active state

TABLE 5-1: WRITE-PROTECT FUNCTIONALITY MATRIX

WEL (SR bit 1)	WPEN (SR bit 7)	$\overline{\mathbf{W P}}$ (pin 3)	Protected Blocks	Unprotected Blocks	STATUS Register
0	x	x	Protected	Protected	Protected
1	0	x	Protected	Writable	Writable
1	1	0 (low)	Protected	Writable	Protected
1	1	1 (high)	Protected	Writable	Writable

x = don't care

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Example

Part Number	1st Line Marking Codes
	SOIC
25LC080C	25LC08CT
25LC080D	25LC08DT
25LC160C	25LC16CT
25LC160D	25LC16DT
25LC320A	25LC32AT
25LC640A	25L640AT
25LC128	25LC128T
25LC256	25LC256T

Note: $\quad \mathrm{T}=$ Temperature Grade (H).

Legend:	XX...X Y YY WW NNN e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code JEDEC designator for Matte Tin (Sn) This package is RoHS compliant. The JEDEC designator (e3) can be found on the outer packaging for this package.
* Custom marking available.		
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.		

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (. 150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing No. C04-057-SN Rev D Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (. 150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN		NOM	MAX
Number of Pins	N	8			
Pitch	e	1.27 BSC			
Overall Height	A	-	-	1.75	
Molded Package Thickness	A 2	1.25	-	-	
Standoff	A 1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E 1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L 1	1.04 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	C	0.17	-	0.25	
Lead Width	b	0.31	-		0.51
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A \& B to be determined at Datum H.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits			MIN	NOM
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	C		5.40	
Contact Pad Width (X8)	X 1			0.60
Contact Pad Length (X8)	Y 1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2057-SN Rev B

REVISION HISTORY

Revision A (01/2009)
Initial release of this document.
Revision B (04/2009)
Revised part number from 25XX to 25LCXXX; Added Note 1 to Electrical Characteristics.

Revision C (06/2009)

Revised Features: Endurance and Package; Revised Table 1-2, Para. 21.

Revision D (09/2018)

Removed Preliminary status; Minor typographical corrections.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the website at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its $P I C^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3536-5

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office

2355 West Chandler Blvd
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/ support
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China-Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

