

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/556

Qualified Levels: JAN, JANTX, and **JANTXV**

DESCRIPTION

This family of 2N6782, 2N6784 and 2N6786 switching transistors are military qualified up to the JANTXV level for high-reliability applications. These devices are also available in a low profile U-18 LCC surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6782, 2N6784 and 2N6786 number series.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/556. (See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Lightweight top-hat design with flexible terminals offers a variety of mounting flexibility.
- Military and other high-reliability applications.

TO-205AF (TO-39) **Package**

Also available in:

U-18 LCC package

(surface mount) 🔼 2N6782U & 2N6786U

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise stated

Parameters / Test Cond	Symbol	Value	Unit	
Operating & Storage Junction Tempe	T _J & T _{stg}	-55 to +150	°C	
Thermal Resistance Junction-to-Case	R _{eJC}	8.33	°C/W	
Total Power Dissipation	@ T _A = +25 °C	P_T	0.8	W
	@ $T_C = +25 {}^{\circ}C^{(1)}$	ГΙ	15	VV
Drain-Source Voltage, dc	2N6782		100	
	2N6784	V_{DS}	200	V
	2N6786		400	
Gate-Source Voltage, dc		V_{GS}	± 20	V
Drain Current, dc @ T _C = +25 °C (2)	2N6782		3.50	
	2N6784	I_{D1}	2.25	Α
	2N6786		1.25	
Drain Current, dc @ T _C = +100 °C (2)	2N6782		2.25	
	2N6784	I_{D2}	1.50	Α
	2N6786		0.80	
Off-State Current (Peak Total Value)	⁽³⁾ 2N6782		14.0	
	2N6784	I_{DM}	9.0	A (pk)
	2N6786		5.5	
Source Current	2N6782		3.50	
	2N6784	Is	2.25	Α
	2N6786		1.25	

See notes on next page.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600

Fax: (978) 689-0803

MSC - Ireland

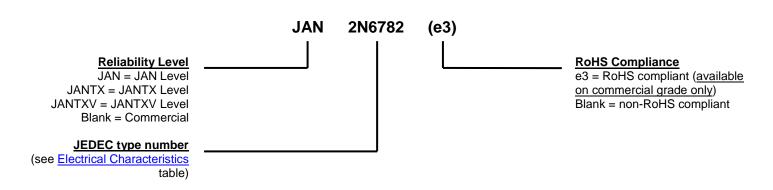
Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

Notes: 1. Derate linearly 0.12 W/°C for $T_C > +25$ °C.

2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.


$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} \ x \ R_{DS(on)} \ @ \ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 1.

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
l _F	Forward current					
R _G	Gate drive impedance					
V_{DD}	Drain supply voltage					
V _{DS}	Drain source voltage, dc					
V _{GS}	Gate source voltage, dc					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	2N6782 2N6784 2N6786	$V_{(BR)DSS}$	100 200 400		٧
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = 0.25$ mA $V_{DS} \ge V_{GS}$, $I_D = 0.25$ mA, $T_J = +125$ °C $V_{DS} \ge V_{GS}$, $I_D = 0.25$ mA, $T_J = -55$ °C		$V_{GS(th)1}$ $V_{GS(th)2}$ $V_{GS(th)3}$	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 \text{ °C}$		I _{GSS1}		±100 ±200	nA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 160 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 320 \text{ V}$	2N6782 2N6784 2N6786	I _{DSS1}		25	μA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}, T_{J} = +125 \text{ °C}$ $V_{GS} = 0 \text{ V}, V_{DS} = 160 \text{ V}, T_{J} = +125 \text{ °C}$ $V_{GS} = 0 \text{ V}, V_{DS} = 320 \text{ V}, T_{J} = +125 \text{ °C}$	2N6782 2N6784 2N6786	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 1.50 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 0.80 \text{ A pulsed}$	2N6782 2N6784 2N6786	r _{DS(on)1}		0.60 1.50 3.60	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 3.50 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 1.25 \text{ A pulsed}$	2N6782 2N6784 2N6786	r _{DS(on)2}		0.61 1.60 3.70	Ω
Static Drain-Source On-State Resistance $T_J = +125 ^{\circ}\text{C}$ $V_{GS} = 10 \text{V}, I_D = 2.25 \text{A pulsed}$ $V_{GS} = 10 \text{V}, I_D = 1.50 \text{A pulsed}$ $V_{GS} = 10 \text{V}, I_D = 0.80 \text{A pulsed}$	2N6782 2N6784 2N6786	r _{DS(on)3}		1.08 2.81 7.92	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 3.50 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 2.25 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 1.25 \text{ A pulsed}$	2N6782 2N6784 2N6786	V_{SD}		1.5 1.5 1.4	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

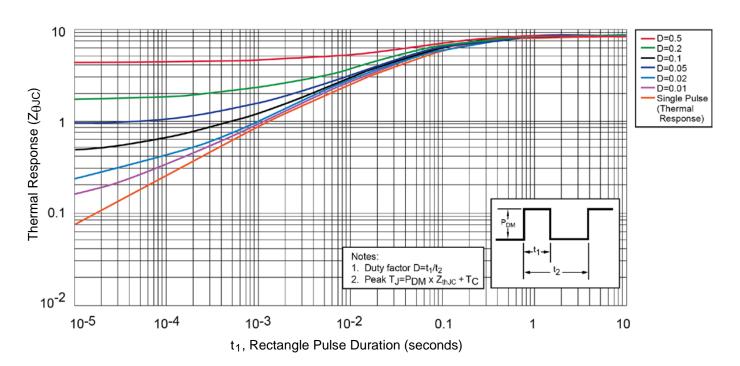
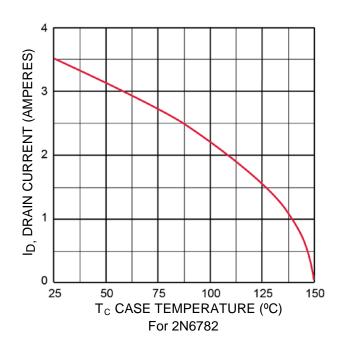
DYNAMIC CHARACTERISTICS

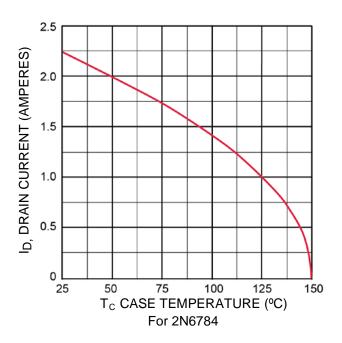
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
On-State Gate Charge $V_{GS} = 10 \text{ V}, I_D = 3.50 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A}, V_{DS} = 100 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 1.25 \text{ A}, V_{DS} = 200 \text{ V}$	2N6782 2N6784 2N6786	$Q_{g(on)}$		8.1 8.6 12	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 3.50 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A}, V_{DS} = 100 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 1.25 \text{ A}, V_{DS} = 200 \text{ V}$	2N6782 2N6784 2N6786	Q_{gs}		1.7 1.5 1.8	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 3.50 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A}, V_{DS} = 100 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 1.25 \text{ A}, V_{DS} = 200 \text{ V}$	2N6782 2N6784 2N6786	Q_{gd}		4.5 5.5 7.6	nC

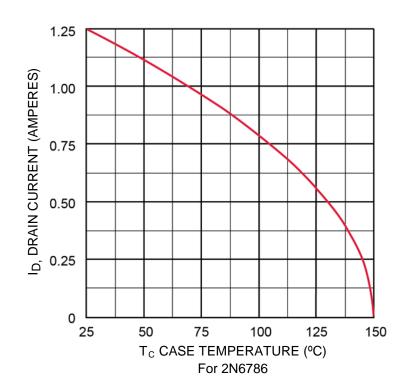
SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time $I_D=3.50~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=50~V$ $I_D=2.25~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=100~V$ $I_D=1.25~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=200~V$	2N6782 2N6784 2N6786	t _{d(on)}		15	ns
Rinse time $I_D = 3.50 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 50 \text{ V}$ $I_D = 2.25 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 100 \text{ V}$ $I_D = 1.25 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 200 \text{ V}$	2N6782 2N6784 2N6786	t _r		25 20 20	ns
Turn-off delay time $I_D=3.50~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=50~V$ $I_D=2.25~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=100~V$ $I_D=1.25~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=200~V$	2N6782 2N6784 2N6786	t _{d(off)}		25 30 35	ns
Fall time $I_{D} = 3.50 \text{ A, V}_{GS} = 10 \text{ V, R}_{G} = 7.5 \Omega, V_{DD} = 50 \text{ V}$ $I_{D} = 2.25 \text{ A, V}_{GS} = 10 \text{ V, R}_{G} = 7.5 \Omega, V_{DD} = 100 \text{ V}$ $I_{D} = 1.25 \text{ A, V}_{GS} = 10 \text{ V, R}_{G} = 7.5 \Omega, V_{DD} = 200 \text{ V}$	2N6782 2N6784 2N6786	t _f		20 20 30	ns
Diode Reverse Recovery Time di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 3.50 A di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 2.25 A di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 1.25 A	2N6782 2N6784 2N6786	t _{rr}		180 350 540	ns

GRAPHS

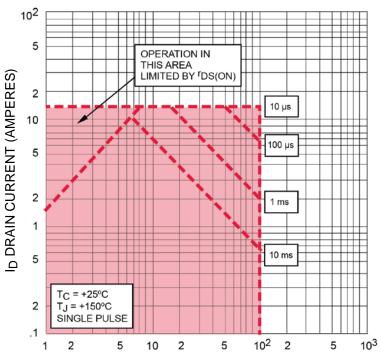



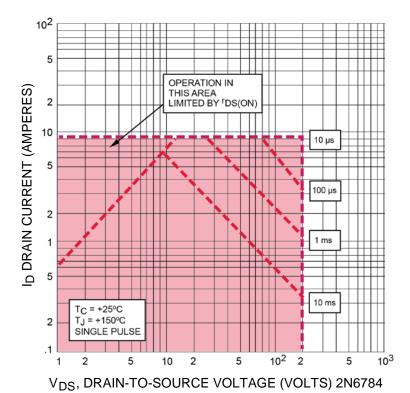

FIGURE 1
Thermal Response Curves



GRAPHS (continued)

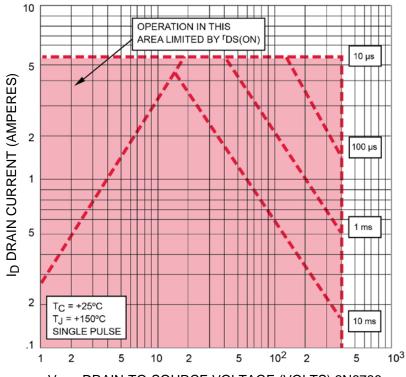
FIGURE 2 - Maximum Drain Current vs Case Temperature Graphs

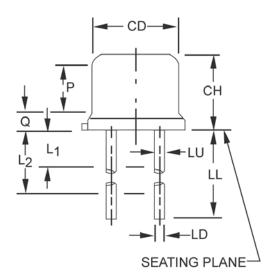


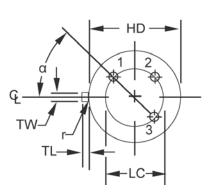


GRAPHS (continued)

FIGURE 3 - Maximum Safe Operating Area


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) 2N6782


GRAPHS (continued)


FIGURE 3 - Maximum Safe Operating Area

PACKAGE DIMENSIONS

Symbol	In	ch	Millim	Millimeters	
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.160	0.180	4.06	4.57	
HD	0.335	0.370	8.51	9.40	
LC	0.20	0.200 TP		5.08 TP	
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8
LU	0.016	0.019	0.41	0.48	7, 8
L1		0.050		1.27	7, 8
L2	0.250		6.35		7, 8
Р	.100		2.54		5
Q		0.050		1.27	4
TL	0.029	0.045	0.74	1.14	3
TW	0.028	0.034	0.72	0.86	2
r		0.010		0.25	9
α	45° TP		45° TP		6

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Beyond radius (r) maximum, J shall be held for a minimum length of .011 (0.028 mm).
- 3. Dimension TL measured from maximum HD.
- 4. Outline in this zone is not controlled.
- 5. Dimension CD shall not vary more than .010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Leads at gauge plane .054 +.001, -.000 (1.37 +0.03, -0.00 mm) below seating plane shall be within .007 (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. LU applies between L1 and L2. LD applies between L2 and L minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. Radius (r) applies to both inside corners of tab.
- 10. Drain is electrically connected to the case.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.