

1N5807CBUS thru 1N5811CBUS

SURFACE MOUNT VOIDLESS-HERMETICALLY-SEALED ULTRA FAST RECOVERY GLASS RECTIFIERS

PRF-19500/74 tolerated. Th voltages from an internal "C leaded packa Microsemi als ratings with	42 and is nese indust 50 to 150 v Category III ige configur so offers nu various red ce types in b	" surface mount ideal for high-rr ry-recognized 6 /olts are hermeti " metallurgical b ations (see sep imerous other re covery time spe poth through-hole	eliability appl .0 Amp rated cally sealed v bond. These arate data sh ectifier produc eed requirem e and surface	le series is r ications whe I rectifiers fo vith voidless- devices are eet for 1N58 cts to meet h ients includii mount packa	ere a fai r workin glass co also av 07CB th igher ar ng stan ages.	ilure can g peak nstructio railable i nru 1N58 nd lower dard, fa	nnot b revers on usir in axia 811CB curre ast, ar	be se ng nl- b). nt	Pack	ARANCE kage "E" 0-5B
registered Voidless-h Extremely Triple-laye Internal "C JAN, JANT Further sci accordanc Axial-leade	ount packag 1N5807 to permetically- robust cons er passivatio Category III" TX, & JANT reening opti ce with MIL- ed equivale		ckage nds [.] MIL-PRF-19 e for JANS in by using a "S	500/742 P" prefix	 M Sⁱ re lo H Lo C ca In 	Itrafast r ilitary ar witching equiring o ss igh forwa ow thern ontrolleo apability	ecove power extrem ard su nal res d avala	ry 6 Amp er high-re r supplie hely fast rge curre istance anche wi	eliability appl is or other ap switching & le ent capability th peak reven	ies 50 to 150V ications plications ow forward
 MAXIMUM RATINGS Operating Temperature: -65°C to +175°C. Storage Temperature: -65°C to +175°C. Average Rectified Forward Current (I₀): 6 Amps @ T_{EC} = 75°C End Cap temperature (see note 1) Thermal Resistance: 6.5 °C/W junction to end cap Thermal Impedance: 1.5 °C/W @ 10 ms heating time Forward Surge Current (8.3 ms half sine) 125 Amps Capacitance: 60 pF at 10 volts, f = 1 MHz Solder temperature: 260°C for 10 s (maximum) 					ealed voidles s are Copper 'Y: Cathode andard per E	ss hard glass with Tin/Lead band only IA-481-B				
		RACTERIST BREAKDOWN VOLTAGE (MIN.) @ 100µA V _{BR} VOLTS	AVERAGE RECTIFIED CURRENT I ₀₁ @T _{EC} =75°C (Note 1) AMPS	AVERAGE RECTIFIED CURRENT I _{O2} @T _A =55°C (Note 2) AMPS	FORV VOL1 @ / (8.3 ms	ſF /	CUR (M @ \	ERSE RENT AX) / _{RWM} I _R 125°C	SURGE CURRENT (MAX) I _{FSM} (NOTE 3) AMPS	REVERSE RECOVERY TIME (MAX) (NOTE 4) t _{rr}
1N5807CBUS 1N5809CBUS	50 100	60 110	6.0 6.0	3.0 3.0	0.875	0.800	5	525 525	125 125	30 30

 1N5811CBUS
 150
 160
 6.0
 3.0

 NOTE 1: Rated at T_{EC} = 75°C. Derate at 60 mA/°C for T_{EC} above 75°C

NOTE 2: Derate linearly at 25 mA/°C above T_A = 55°C. This rating is typical for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where T_{J(max)} does not exceed 175°C

0.875

0.800

5

NOTE 3: $T_A = 25^{\circ}C$ @ $I_O = 3.0$ A and V_{RWM} for ten 8.3 ms surges at 1 minute intervals

NOTE 4: $I_F = 1.0 \text{ A}$, $I_{RM} = 1.0 \text{ A}$, $I_{R(REC)} = 0.10 \text{ A}$ and di/dt = 100 A/µs min

Copyright © 2007 7-26-2007

Microsemi Scottsdale Division

30

1N5807CBUS-1N5811CBUS

8700 E. Thomas Rd. PO Box 1390, Scottsdale, AZ 85252 USA, (480) 941-6300, Fax: (480) 947-1503

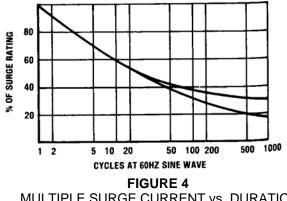
525

125

1N5807CBUS thru 1N5811CBUS

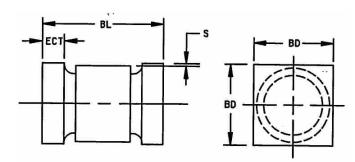
SURFACE MOUNT VOIDLESS-HERMETICALLY-SEALED ULTRA FAST RECOVERY GLASS RECTIFIERS

	SYMBOLS & DEFINITIONS					
Symb	Definition					
V _{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.					
V _{RWI}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range.					
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.					
I _R	Maximum Leakage Current: The maximum leakage current that will flow at the specified voltage and temperature.					
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage					
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified recovery decay point after a peak reverse current is reached.					
	GRAPHS					
	$\begin{array}{c} 1 \\ 2 \\ +175^{\circ}C \\ \hline \\ -50^{\circ}C \\ \hline \\ +25^{\circ}C \\ +100^{\circ}C \\ \hline \\ +100^{\circ}C \\ \hline \\ -50^{\circ}C \\ \hline \\ +100^{\circ}C \\ \hline \\ -50^{\circ}C \\ \hline \\ +100^{\circ}C \\ \hline \\ -50^{\circ}C \\ \hline \\ -50^{$					


Copyright © 2007 7-26-2007

Page 2

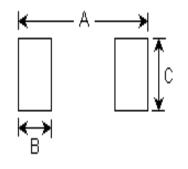
www.Microsemi.com


1N5807CBUS thru 1N5811CBUS

SURFACE MOUNT VOIDLESS-HERMETICALLY-SEALED ULTRA FAST **RECOVERY GLASS RECTIFIERS**

MULTIPLE SURGE CURRENT vs. DURATION

PACKAGE DIMENSIONS AND PAD LAYOUT



licrosen

SCOTTSDALE DIVISION

NOTE: This Package Outline has also previously been identified as "D-5B"

	INC	HES	mm		
	MIN	MAX	MIN	MAX	
BL	.205	.225	5.21	5.72	
BD	.137	.142	3.48	3.61	
ECT	.019	.028	0.48	0.711	
S	.003		0.08		

PAD LAYOUT

	INCHES	mm		
Α	0.288	7.32		
В	0.070	1.78		
С	0.155	3.94		
Note: If mounting requires adhesive separate from the solder, an additional 0.080 inch diameter contact may be placed in the center between the pads				
as an optional spot for cement.				

Page 3