

POWER PIN DIODES

DESCRIPTION

These series of PIN diodes are designed for applications requiring small package size and moderate average power handling capability. The low capacitance of the UM6000 and UM6600 allows them to be used as series switching elements to 1 GHz. The low resistance of the UM6200 is useful in applications where forward bias current must be minimized.

Because of its thick I-region width and long lifetime the UM6000 and UM6600 have been used in distortion sensitive and high peak power applications, including receiver protectors, TACN, and IFF equipment. Their low capacitance allows them to be useful as attenuator diodes at frequencies greater than 1 GHz. The UM6200 has been

used successfully in switches in which low insertion loss at low bias current is required. The "A" style package for this series is the smallest Microsemi PIN diode package. It has been used successfully in many microwave applications using coaxial, microstrip, and stripline techniques at frequencies beyond X-Band. The "B" and "E" style leaded packages offer the highest available power dissipation for a package this small. They have been used extensively as series switch elements in microstrip circuits. The "C" style package duplicates the physical outline available in conventional ceramic-metal packages but incorporates the many reliability advantages of the Microsemi construction.

KEY FEATURES

- Voltage ratings to 1000V
- Average power dissipation to 6 W
- Series resistance as low as 0.4 Ω
- Carrier lifetime greater than 1.0 µs
- Non cavity design
- Thermally matched configuration
- Low capacitance at 0 V bias
- Low conductance at 0 V bias
- Compatible with automatic insertion equipment

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED) **Package** Condition UM6000/UM6600 **UM6200** PD PD θ 25 °C Pin Temperature 25 °C/W A & C 6 W 4 W 37.5 °C/W **B & E** ½ in. total length to 25 °C Contact 60 °C/W 2.0 W 75 °C/W 2.5 W 0.5 W 0.5 W 25 °C End Cap Temperature 27.5°C/W SM 4.5 W 3.0 W 42.5 °C/W UM6000 25 kW ΑII 1 us pulse (Single) 10 kW UM6600 13 kW

VOLTAGE RATINGS						
Reverse Voltage @ 10 uA						
100	UM6001	UM6201	UM6601			
200	UM6002	UM6202	UM6602			
400	-	UM6204	-			
800	UM6006	-	UM6606			
1000	UM6010	-	UM6610			

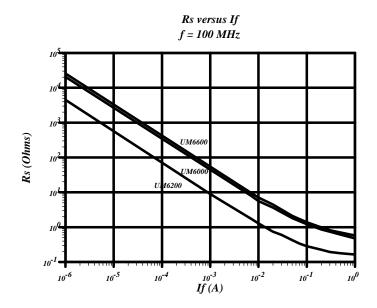
APPLICATIONS/BENEFITS

- Isolated stud package available
- Surface mount package available
- RoHS compliant packaging available: use UMX6001B, etc.

UM6000/UM62000/UM660

POWER PIN DIODES

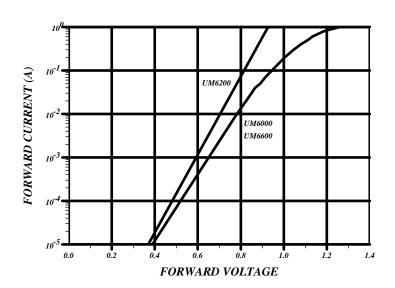
ELECTRICAL PARAMETERS @ 25°C (unless otherwise specified)							
Parameter	Symbol	Conditions	UM6600	UM6000	UM6200	Units	
Reverse Current (Max)	I _R	At rated voltage	10	10	10	uA	
Series Resistance(Max)	Rs	If = 100 mA, F= 100 MHz	2.5	1.7	0.4	Ohms	
Capacitance (Max)	Ст	$V_R = 100 \text{ V}, F = 1 \text{ MH}_Z$	0.4	0.5	1.1	pF	
Parallel Resistance(Min)) Rp	$V_R = 100 \text{ V}, F = 100 \text{ MHz}$	300k	300k	350k	Ohms	
Carrier Lifetime(Min)	τ	I _F = 10 mA	1.0	1.0	0.6	us	
I-Region Width (Min)	W	-	150	150	40	um	



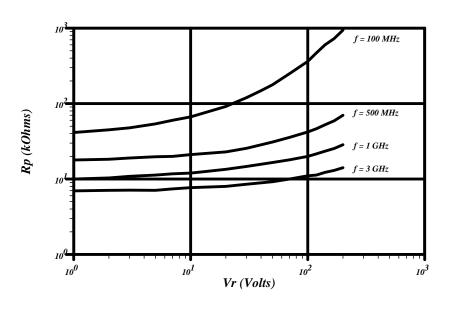
Style "B"

Style "SM"

UM6000/UM6200/UM6600



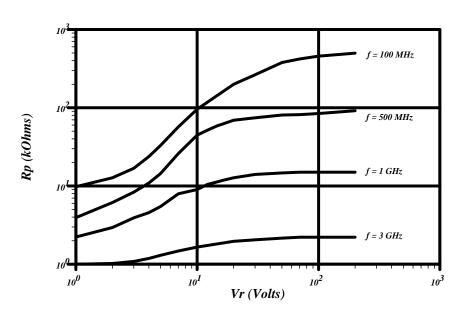
POWER PIN DIODES


UM6000/UM6200/UM6600

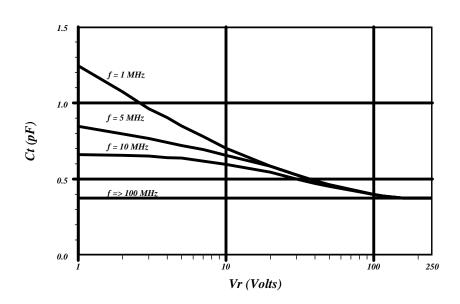
FORWARD VOLTAGE versus CURRENT

UM6000/UM6600

Rp versus Vr



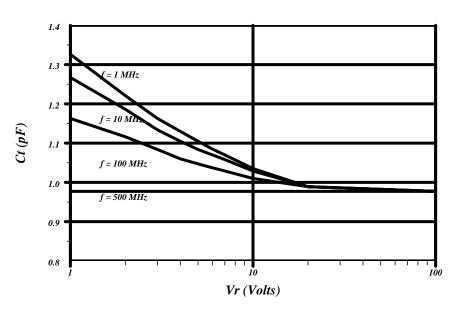
POWER PIN DIODES

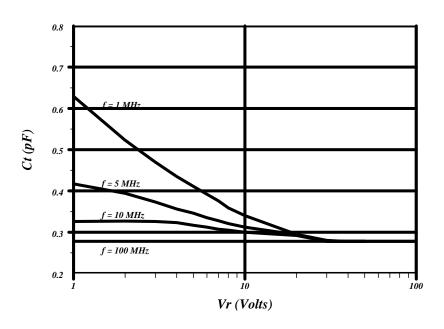

UM6200

Rp versus Vr

UM6000

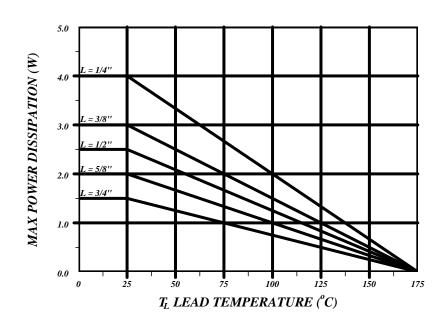
Ct versus Vr

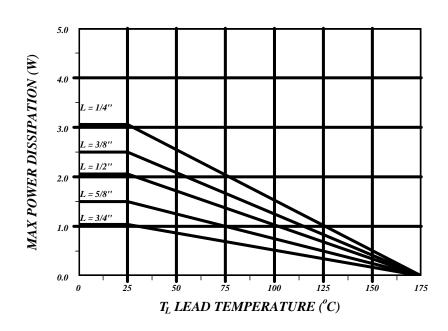



POWER PIN DIODES

UM6200

Ct versus Vr

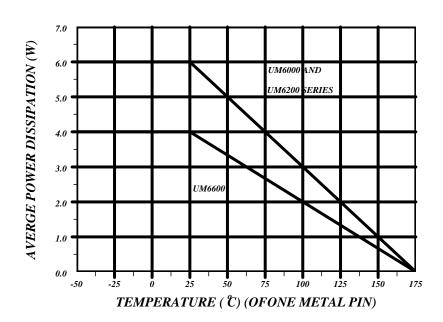

UM6600 Ct versus Vr

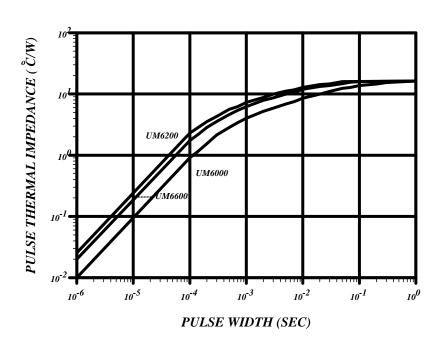

POWER PIN DIODES

UM6000/UM6200 MAX POWER DISSIPATION versus LEAD TEMPERATURE

UM6600

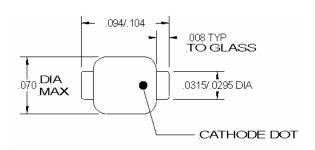
MAX POWER DISSIPATION versus LEAD TEMPERATURE




POWER PIN DIODES

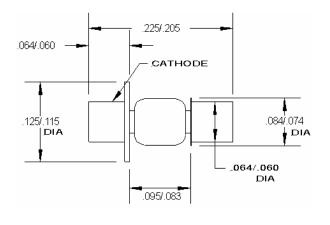
UM6000/UM6200/UM6600

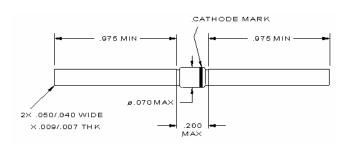
AVERGE POWER DISSIPATION versus TEMPERATURE


UM6000/UM6200/UM6600 PULSE THERMAL IMPEDANCE VS PULSE WIDTH

POWER PIN DIODES

STYLE "A"

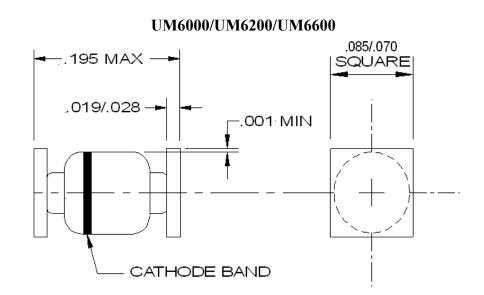

.019/.021 DIA

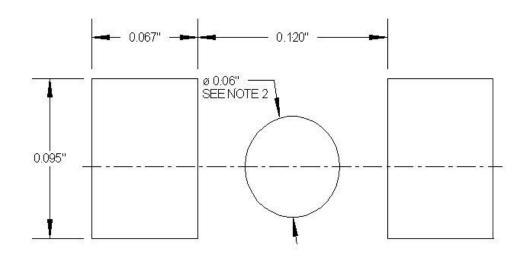

STYLE "E"

.070 DIA

STYLE "B"

STYLE "C"




STYLE "D" ø.125 x.060 THK BeO CERAMIC .600 MN TYP CATHODE Cu RIBBON (2 PL) .121/.128 WIDE X .005/.008 THK .210/.245 .119/.111 .190/.180 .035 MAX TO FIRST FULL .187 HEX **THREAD** 4-40 UNC-2A

POWER PIN DIODES

UM6000/UM6200/UM6600 STYLE "SM" FOOTPRINT

POWER PIN DIODES

NOTES:

- 1. These dimensions will match the terminals and provide for additional solder fillets at the outboard ends at least as wide as the terminals themselves, assuming accuracy of placement within 0.005"
- 2. If the mounting method chosen requires use of an adhesive separate from the solder compound, a round (or square) spot of cement as shown should be centrally located.

NOTES: