
100 Volt, 10 Amp Dual Schottky Common Cathode Center Tap Rectifier

Qualified per MIL-PRF-19500/681

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This low-profile 1N6843CCU3 Schottky rectifier device is military qualified up to a JANTXV level for high-reliability applications.

U3 (SMD-0.5) Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 1N6842.
- Low profile ceramic SMD.
- Ultrasonic aluminum wire bonds.
- JAN, JANTX, JANTXV qualifications available per MIL-PRF-19500/681.
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- High surge rating.
- Low reverse leakage current.
- Low forward voltage.
- Seam welded package.
- Low capacitance.

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +150	°C
Thermal Resistance Junction-to-Case on each leg entire package		3.5 1.75	°C/W
Thermal Resistance Junction-to-Ambient each leg	$R_{\Theta JA}$	40	°C/W
Working Peak Reverse Voltage	V_{RWM}	100	V
Average Rectified Output Current per leg (see Figure 1)	Io	15	А
Non-Repetitive Sinusoidal Surge Current @ tp = 8.3 ms	I _{FSM}	100	Α

MSC - Lawrence

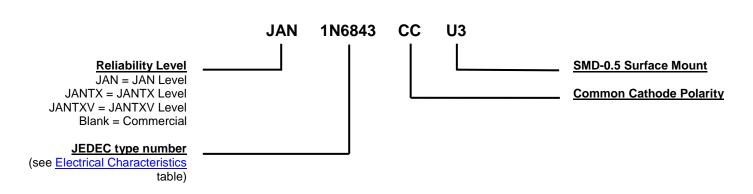
6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or

(978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, A = anode.
- POLARITY: See schematic on last page.
- WEIGHT: Approximately 0.9 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
CJ	Junction Capacitance: The junction capacitance in pF at a specified frequency (typically 1MHz) and specified voltage.				
I _F	Forward Current: The forward current dc value, no alternating component.				
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.				
TJ	Junction Temperature: The temperature of a semiconductor junction.				
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).				
V_R	Reverse Voltage: The reverse voltage dc value, no alternating component.				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
CHARACTERISTICS per Leg				
Forward Voltage*				
I _F = 5 A, 300 μs Pulse			0.77	
I _F = 15 A, 300 μs Pulse			1.03	
I _F = 30 A, 300 μs Pulse			1.27	
$I_F = 5 \text{ A}$, $T_C = +125 °C$, 300 μs Pulse			0.60	
$I_F = 15 \text{ A}, T_C = +125 ^{\circ}\text{C}, 300 \mu\text{s Pulse}$	V _F		0.77	V
$I_F = 30 \text{ A}, T_C = +125 ^{\circ}\text{C}, 300 \mu\text{s} \text{ Pulse}$			0.95	
$I_F = 5 \text{ A}, T_C = -55 °C, 300 μs Pulse$			0.86	
$I_F = 15 \text{ A}, T_C = -55 ^{\circ}\text{C}, 300 \mu \text{s Pulse}$			1.18	
I _F = 30 A, T _C = - 55 °C, 300 μs Pulse			1.43	
Reverse Current				
$V_{R} = 100 \text{ V}$	I _R		0.010	mΑ
$V_R = 100 \text{ V}, T_C = +125 ^{\circ}\text{C}$			5.0	
Junction Capacitance				
$V_R = 5 V$	CJ		275	pF
f = 1 MHz				Ρ'
$V_{SIG} = 50 \text{ mV (p-p)}$				

 $^{^{\}ast}$ Pulse test: Pulse width 300 µsec, duty cycle 2%.

GRAPHS

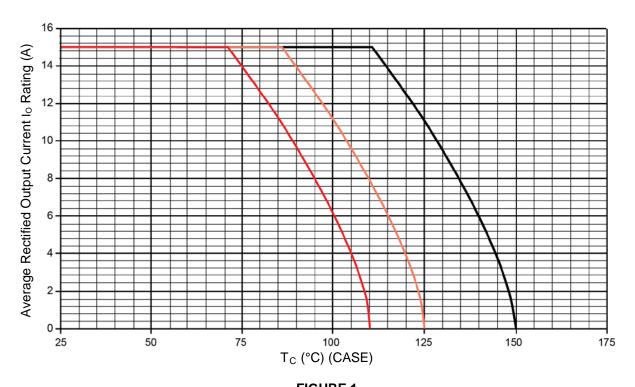


FIGURE 1
Temperature-current derating curve (for each leg)

NOTES:

- All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate current for the desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ 150 °C) and current rating specified. (See <u>Maximum Ratings</u>.)
- 3. Derate design curve chosen at $T_J \le 125$ °C, where the maximum temperature of electrical test is performed.
- 4. Derate design curves chosen at T_J ≤, 125 °C, and 110 °C to show current rating where most users want to limit T_J in their application.

GRAPHS (continued)

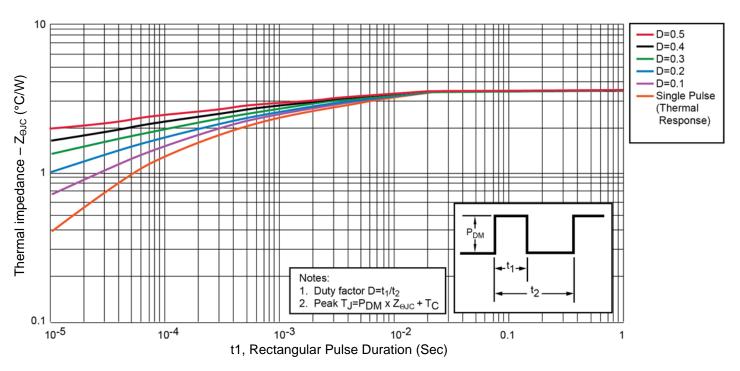
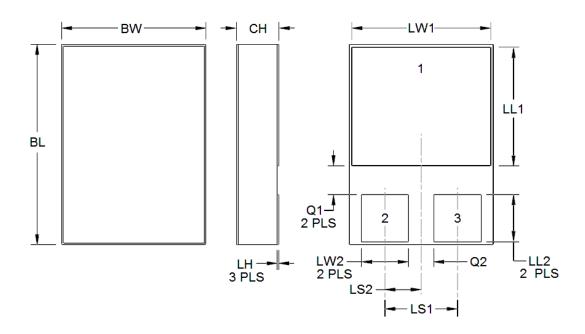
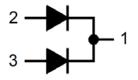



FIGURE 2
Thermal impedance (for each leg)



PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only. 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Schematic

Cumbal	DIMENSIONS				
Symbol	INCH		MILLIMETERS		
	Min	Max	Min	Max	
BL	0.395	0.405	10.03	10.29	
BW	0.291	0.301	7.39	7.65	
CH	0.112	0.124	2.84	3.15	
LH	0.010	0.020	0.25	0.51	
LL1	0.220	0.230	5.59	5.84	
LL2	0.115	0.125	2.92	3.18	
LS1	0.150	BSC	3.81 BSC		
LS2	0.075 BSC		1.91 BSC		
LW1	0.281	0.291	7.14	7.39	
LW2	0.090	0.100	2.29	2.54	
Q1	0.030		0.76		
Q2	0.030		0.76		
Term 1	Common Cathode				
Term 2	Anode (See Schematic)				
Term 3	Anode (See Schematic)				