NPN SILICON SWITCHING TRANSISTOR
 Qualified per MIL-PRF-19500/395

DEVICES

2N3735	2N3735L
2N3737	2N3737UB

LEVELS
JAN
JANTX JANTXV JANS

ABSOLUTE MAXIMUM RATINGS ($T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	75	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	5	Vdc
Collector Current	I_{C}	1.5	Adc
 Total Power Dissipation 2N3735, 2N3735L @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 2 N 3737 2 N 3737 UB	P_{T}	$\begin{aligned} & 1.0(1) \\ & 0.5(3) \\ & 0.5(5) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{W} \\ & \mathrm{~W} \\ & \mathrm{~W} \end{aligned}$
Total Power Dissipation 2N3735, 2N3735L @ $\mathrm{TC}=+25^{\circ} \mathrm{C}$ 2N3737 $2 N 3737 \mathrm{UB}$	P_{T}	$\begin{gathered} 2.9(2) \\ 1.9(4) \\ \text { N/A } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { W } \\ \text { W } \end{gathered}$
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

* Electrical characteristics for "L" suffix devices are identical to the "non L" corresponding devices.
(1) Derate linearly at $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
(2) Derate linearly at $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
(3) Derate linearly at $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
(4) Derate linearly at $11.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
(5) Derate linearly at $3.07 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
(6) $\mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C}$ for UB on printed circuit board (PCB). PCB $=$ FR4 .0625 inch (1.59MM) 1 - layer 1 oz Cu , horizontal, still air, pads $(\mathrm{UB})=.034$ inch $(0.86 \mathrm{~mm}) \times .048$ inch (1.2 mm), $\mathrm{R}_{\theta J \mathrm{~A}}$ with a defined thermal resistance condition included is measured at $\mathrm{P}_{\mathrm{T}}=$ 500 mW .

ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	40		Vdc
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}$	$\mathrm{I}_{\mathrm{CBO}}$		10	$\mu \mathrm{Adc}$
Collector-Base Cutoff Current $\mathrm{V}_{\mathrm{CB}}=75 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vd}$		250	$\eta \mathrm{Adc}$	

TO-5* 2N3735L

TO-39* (TO-205AD) 2N3735

3 PIN 2N3737UB

TO-46 (TO-206AB) 2N3737

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				
Collector- Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EB}}=2.0 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{Vdc} \quad \mathrm{TA}=+150^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {CEX }}$		$\begin{aligned} & 200 \\ & 250 \end{aligned}$	nAdc $\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\begin{aligned} \mathrm{V}_{\mathrm{EB}} & =5.0 \mathrm{Vdc} \\ \mathrm{~V}_{\mathrm{EB}} & =4.0 \mathrm{Vdc} \end{aligned}$	$\mathrm{I}_{\text {EBO }}$		$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$ nAdc
ON CHARACTERISTICS ${ }^{(1)}$				
Forward-Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=1.5 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 35 \\ & 40 \\ & 40 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 150 \\ 80 \end{gathered}$	
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15.0 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50.0 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{mAdc} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$		$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.5 \\ & 0.9 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15.0 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50.0 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{mAdc}$	$\mathrm{V}_{\text {BE(sat) }}$		$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.2 \\ & 1.4 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	2.5	6.0	
Delay Response $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{BE}}=2 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B} 2}=100 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{CC}}=30 \mathrm{Vdc}$	t_{d}		8	
Turn-Off Time $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc}$	$\mathrm{t}_{\mathrm{off}}$		$\mathrm{\eta s}$	
Rise Time $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{BE}}=2 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc}$	t_{r}		60	$\mathrm{\eta s}$
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		40	$\mathrm{\eta s}$
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{ibo}}$		9	pF

(1) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

PACKAGE DIMENSIONS

2N3735 Dimensions TO-39

Ltr	Dimensions				Millimeters
	Incheses				
	Min	Max	Min		Max
CD	.305	.355	7.75	9.02	
CH	.240	.260	6.10	6.60	
HD	.355	.370	9.02	9.40	
LC	.200 TP		5.08 TP		6
LD	.016	.021	0.41	0.53	7
LL	.500	.750	12.70	19.05	7
LU	.016	.019	0.41	0.48	7
$\mathrm{~L}_{1}$.050		1.27	7
$\mathrm{~L}_{2}$.250		6.35		7
P	.100		2.54		
TL	.029	.045	0.74	1.14	3
TW	.028	.034	0.71	0.86	9
Q		.040		1.02	4
r		.010		0.25	10
α	$45^{\circ} \mathrm{TP}$	$45^{\circ} \mathrm{TP}$		6	

2N3735L Dimensions TO-5

Ltr	Dimensions				Millimeters				
	Inches		Motes						
	Min	Max	Min	Max					
CD	.305	.355	7.75	9.02					
CH	.240	.260	6.10	6.60					
HD	.355	.370	9.02	9.40					
LC	.200 TP		5.08 TP		6				
LD	.016	.021	0.41	0.53	7				
LL	1.500	1.750	38.10	44.45	7				
LU	.016	.019	0.41	0.48	7				
$\mathrm{~L}_{1}$.050		1.27	7				
$\mathrm{~L}_{2}$.250		6.35		7				
P	.100		2.54						
TL	.029	.045	0.74	1.14	3				
TW	.028	.034	0.71	0.86	9				
Q		.040		1.02	4				
R		.010		0.25	10				
α	$45^{\circ} \mathrm{TP}$						$45^{\circ} \mathrm{TP}$		6

FIGURE 1: Physical dimensions - TO-39, TO-5

PACKAGE DIMENSIONS

Ltr	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	. 178	. 195	4.52	4.95	
CH	. 065	. 085	1.65	2.16	
HD	. 209	. 230	5.31	5.84	
LC	. 100 TP		2.54 TP		5
LD	. 016	. 021	0.41	0.53	
LL	. 500	1.750	12.70	44.45	6
LU	. 016	. 019	0.41	0.48	6
L_{1}		. 050		1.27	6
L_{2}	. 250		6.35		6
Q		. 040		1.02	3
TL	. 028	. 048	0.71	1.22	8
TW	. 036	. 046	0.91	1.17	4
r		. 010		0.25	9
α	$45^{\circ} \mathrm{TP}$		$45^{\circ} \mathrm{TP}$		5

NOTES:

1 Dimensions are in inches.
2 Millimeters are given for general information only.
3 Symbol TL is measured from HD maximum.
4 Details of outline in this zone are optional.
5 Leads at gauge plane .054 inch $(1.37 \mathrm{~mm})+.001$ inch $(0.03 \mathrm{~mm})-.000$ inch $(0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch $(0.18 \mathrm{~mm})$ radius of TP relative to tab. Device may be measured by direct methods or by gauge.
6 Symbol LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum.
7 Lead number three is electrically connected to case.
8 Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
9 Symbol r applied to both inside corners of tab.
10 In accordance with ASME Y14.5M, diameters are equivalent to ϕx symbology.
11 Lead 1 is emitter, lead 2 is base, and lead 3 is collector.

FIGURE 2: Physical dimensions - TO-46 2N3737

PACKAGE DIMENSIONS

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Hatched areas on package denote metalized areas.
4. Lid material: Kovar.
5. Pad $1=$ Base, Pad $2=$ Emitter, Pad $3=$ Collector, Pad $4=$ Shielding connected to the lid.
6. In accordance with ASME Y14.5m, diameters are Equivalent to $\phi \mathrm{x}$ symbology.

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL1	.022	.038	0.56	0.96	
LL2	.017	.035	0.43	0.89	
LS1	.036	.040	0.91	1.02	
LS2	.071	.079	1.81	2.01	
LW	.016	.024	0.41	0.61	
r		.008		.203	
R1		.012		.305	
R2		.022		.559	

