

PRODUCT DATASHEET

DESCRIPTION

The SG79xxA/SG79xx series of negative control have been designed into these units series is an optimum complement to the application is assured. SG7800A/SG7800 positive three terminal Although regulators.

voltage tolerance of $\pm 1.5\%$.

The SG79xxA versions also offer much improved line regulation characteristics. All protective features of thermal

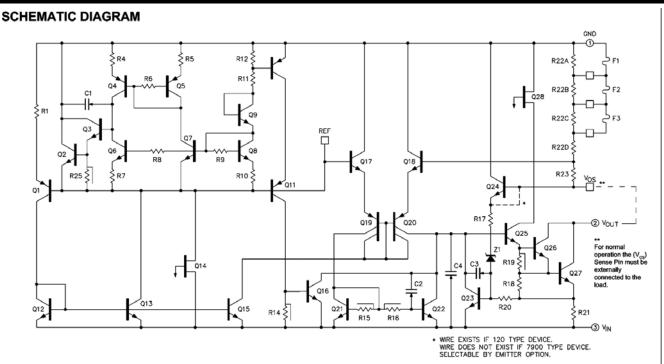
shutdown, current limiting, and safe-area

regulators offer self-contained, fixed- and since these regulators require only a voltage capability with up to 1.5A of load single output capacitor (SG79xx series) or a current and input voltage up to -30V. With capacitor and 5mA minimum load (SG120 a variety of output voltages this regulator series) for satisfactory performance, ease of

designed as fixed-voltage regulators, the output voltage can be These units feature a unique band gap increased through the use of a simple reference which allows the SG79xxA voltage divider. The low quiescent drain series to be specified with an output current of the device insures good regulation when this method is used.

> These devices are available hermetically sealed TO-257 (both case grounded 'G' and isolated 'IG'), TO-3, TO-39 and LCC packages.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com


KEY FEATURES

- Output Voltage Set Internally to ±1.5% on SG79xxA
- Output Current to 1.5A
- Excellent Line and Load Regulation
- Foldback Current Limiting
- Thermal Overload Protection
- Voltages Available: -5V, -12V, -15V
- Contact Factory for Other Voltage
- Available in Surface Mount Package

HIGH RELIABILITY FEATURES - SG79xxA/SG79xx

- Available to MIL-STD 883, ¶ 1.2.1
- MIL-M38510/11501BXA JAN7905T
- MIL-M38510/11505BYA JAN7905K
- MIL-M38510/11502BXA JAN7912T
- MIL-M38510/11506BYA JAN7912K
- MIL-M38510/11503BXA JAN7915T
- MIL-M38510/11507BYA JAN7915K
- MIL-M38510/11508BYA JAN7924K
- MSC-AMSG level "S" Processing Available
- Available to DSCC
- Standard Microcircuit Drawing (SMD)

PRODUCT HIGHLIGHT

specified terminal.

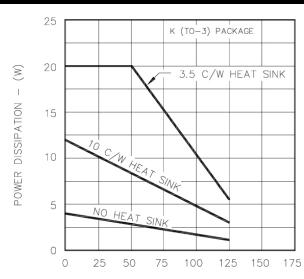
Negative Fixed Voltage Regulator

PRODUCT DATASHEET

ABSOLUTE MAXIMUM RATINGS

Device Output Voltage	Input Voltage	Input Voltage Differential (Output Shorted to Ground)	
-5V	-35V	35V	
-12V	-35V	35V	
-15V	-40V	35V	
Storage Temperature Range	·····		65°C to 150°C
Note: Exceeding these ratings	s could cause damage to th	e device. All voltages are with respect to Ground. Currents ar	re positive into, negative out of

THERMAL DATA				
K TO-3 3-Pin Metal Can				
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	3.0°C/W			
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	35°C/W			
TO-39 3-Pin Metal Can				
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	15°C/W			
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	120°C/W			
G TO-257 3-Pin Hermetic THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC} THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	3.5°C/W 42°C/W			
IG TO-257 3-Pin Hermetic (Isolated)				
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	4.0°C/W			
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	42°C/W			
Leadless Chip Carrier 20-Pin Ceramic				
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	35°C/W			
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	120°C/W			


Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$.

The θ_{IA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

PRODUCT DATASHEET

AMBIENT TEMPERATURE – (°C)

Figure 1 – Maximum Average Power Dissipation

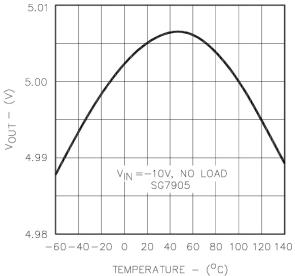


Figure 3 – Temperature Coefficient

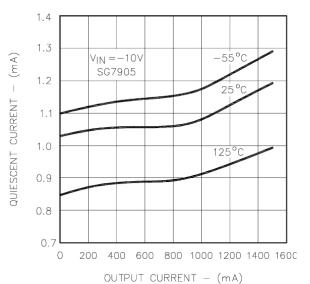


Figure 2 - Quiescent Current vs. Load

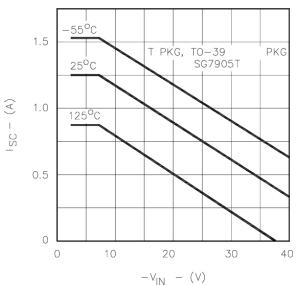
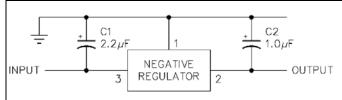


Figure 4 - Short-circuit Current vs. VIN


PRODUCT DATASHEET

PRODUCT DATASHEET

APPLICATIONS

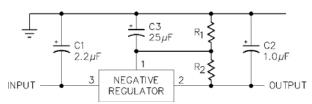


Figure 9 - Fixed Output Regulator

Figure 10 - Circuit for Increasing Output Voltage

- Note: 1. C1 is required only if regulator is separated from rectifier filter.
 - 2. Both C1 and C2 should be low E.S.R. types such as solid tantalum. If aluminum electrolytic capacitors are used, at least 10 times values shown should be selected.
 - 3. If large output capacities are used, the regulators must be protected from momentary input shorts. A high current diode.

Note: C3 optional for improved transient response and ripple rejection.

$$V_{\text{OUT}} = V \Big(\text{REGULATOR} \Big) \frac{R_1 + R_2}{R_1}$$

$$R_2 = \frac{V(REG)}{15mA}$$

RECOMMENDED OPERATING CONDITIONS

Parameter		SG79xx / 79xxA			
raidilletei	Min	Тур	Max	Units	
Operating Junction Temperature Range (Note 2)	-55		150	°C	

Note 2: Range over which the device is functional.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7905A / SG7905 with -55°C \leq T_A \leq 125°C, V_{IN} = -10V, I_O = 500mA for the K, G, and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 2 μ F, and C_{OUT} = 1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG7905A			SG7905			Units
Parameter	rest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	$T_J = 25^{\circ}C$	-4.95	-5.00	-5.08	-4.80	-5.00	-5.20	V
Line Regulation (Note 1)	$V_{IN} = -7.5V$ to -25V, $T_J = 25^{\circ}C$		5	25		3	50	mV
	$V_{IN} = -8V \text{ to } -12V, T_J = 25^{\circ}C$		3	12		1	25	mV
Load Regulation (Note 1)	Power Pkgs: I_0 = 5mA to 1.5A, T_J = 25°C		15	75		15	100	mV
	$I_{\rm O}$ = 250mA to 750mA, $T_{\rm J}$ = 25°C		15	25		15	25	mV
	T – Pkg: I_0 = 5mA to 500mA, T_J = 250°C		5	30		5	100	mV
Total Output Voltage	$V_{IN} = -8V \text{ to } -20V$							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	-4.85	-5.00	-5.15	-4.70	-5.00	-5.30	V
	T – Pkg: I_0 =5mA to 500mA, P \leq 20W	-4.85	-5.00	-5.15	-4.70	-5.00	-5.30	V
Quiescent Current	Over Temperature Range			2.5			2.5	mA
	$T_J = 25^{\circ}C$			2.0			2.0	mA
Quiescent Current Change	With Line: $V_{IN} = -8V$ to $-25V$			1.3			1.3	mA
	With Load: I_0 = 5mA to 1.0A (Power Pkgs.)			0.5			0.5	mA
	$I_{O} = 5mA \text{ to } 500mA \text{ (T)}$			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, T_{J} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T-Pkg: I_0 = 500mA		1.1	2.3		1.1	2.3	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5		3.3	1.5		3.3	Α
	$T - Pkg: T_J = 25^{\circ}C$	0.5		1.4	0.5		1.4	Α
Short Circuit Current	Power Pkgs: V_{IN} = -35V, T_J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = -35V, T_{J} = 25^{\circ}C$			0.6			0.6	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_{J} = 25$ °C	54			54			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (Note 2)		25	80		25	80	μV/V
Long Term Stability	1000 hours @ T _J = 125°C		20			20		mV
Thermal Shutdown	$I_0 = 5mA$		175			175		°C

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7912A / SG7912 with -55°C \leq T_A \leq 125°C, V_{IN} = -19V, I_O = 500mA for the K, G, and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 2 μ F, and C_{OUT} = 1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG7912A			SG7912			Units
		Min	Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	-11.8	-12.0	-12.2	-11.5	-12.0	-12.5	V
Line Regulation (Note 1)	$V_{IN} = -14.5 \text{V to } -30 \text{V}, T_J = 25 ^{\circ} \text{C}$		4	60		10	120	mV
	$V_{IN} = -16V \text{ to } -22V, T_J = 25^{\circ}C$		3	30		3	60	mV
Load Regulation (Note 1)	Power Pkgs: I_O = 5mA to 1.5A, T_J = 25°C		20	90		12	120	mV
	I_0 = 250mA to 750mA, T_J = 25°C		10	40		10	60	mV
	$T - Pkg: I_O = 5mA \text{ to } 500mA, T_J = 25^{\circ}C$		10	40		10	240	mV
Total Output Voltage	V _{IN} = -14.5V to -27V							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	-11.7	-12.0	-12.3	-11.4	-12.0	-12.6	V
	T – Pkg: I_0 = 5mA to 500mA, P \leq 2W	-11.7	-12.0	-12.3	-11.4	-12.0	-12.6	V
Quiescent Current	Over Temperature Range			4			4	mA
	$T_J = 25^{\circ}C$			3			3	mA
Quiescent Current Change	With Line: $V_{IN} = -14.5V$ to $-30V$			1.0			1.0	mA
	With Load: I _O = 5mA to 1.0A (Power Pkgs.)			0.5			0.5	mA
	$I_{O} = 5 \text{mA to } 500 \text{mA (T)}$			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, \text{ TJ} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T – Pkg: I_0 = 500mA		1.1	2.3		1.1	2.3	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5		3.3	1.5		3.3	Α
	$T - Pkg: T_J = 25^{\circ}C$	0.5		1.4	0.5		1.4	Α
Short Circuit Current	Power Pkgs: $V_{IN} = -35V$, $T_J = 25$ °C			1.2			0.2	Α
	$T - Pkg: V_{IN} = -35V, T_{J} = 25^{\circ}C$			0.6			0.6	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_{J} = 25$ °C	54			54			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (note 2)		25	80		25	80	μV/V
Long Term Stability	1000 hours @ T _J = 125°C		60			60		mV
Thermal Shutdown	$I_0 = 5mA$		175			175		°C

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7915A / SG7915 with -55°C \leq T_A \leq 125°C, V_{IN} = -23V, I_O = 500mA for the K, G, and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 2 μ F, and C_{OUT} = 1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG7915A			SG7915			Units
Parameter	lest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	-14.8	-15.0	-15.2	-14.4	-15.0	-15.6	V
Line Regulation (Note 1)	$V_{IN} = -17.5V \text{ to } -30V, T_J = 25^{\circ}C$		5	75		11	150	mV
	V_{IN} = -20V to -25V, T_{J} = 25°C		3	40		3	75	mV
Load Regulation (Note 1)	Power Pkgs: I_O = 5mA to 1.5A, T_J = 25°C		30	100		12	150	mV
	$I_{\rm O}$ = 250mA to 750mA, $T_{\rm J}$ = 25°C		4	50		4	75	mV
	$T - Pkg: I_O = 5mA \text{ to } 500mA, T_J = 25^{\circ}C$		10	50		10	240	
Total Output Voltage	$V_{IN} = -18.5V \text{ to } -30V$							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	-14.6	-15.0	-15.4	-14.25	-15.00	-15.75	V
	T – Pkg: I_0 = 5mA to 500mA, P \leq 2W	-14.6	-15.0	-15.4	-14.25	-15.00	-15.75	V
Quiescent Current	Over Temperature Range			4			4	mA
	$T_J = 25^{\circ}C$			3			3	mA
Quiescent Current Change	With Line: $V_{IN} = -18.5V$ to $-30V$			1.0			1.0	mA
	With Load: I _O = 5mA to 1.0A (Power Pkgs)			0.5			0.5	mA
	$I_{O} = 5mA \text{ to } 500mA \text{ (T)}$			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, T_{J} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T – Pkg: I_0 = 500mA		1.1	2.3		1.1	2.3	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5		3.3	1.5		3.3	Α
	$T - Pkg: T_J = 25^{\circ}C$	0.5		1.4	0.5		1.4	Α
Short Circuit Current	Power Pkgs: $V_{IN} = -35V$, $T_J = 25$ °C			1.2			1.2	Α
	$T - Pkg: V_{IN} = -35V, T_{J} = 25^{\circ}C$			0.6			0.6	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_J = 25$ °C	54			54			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (note 2)		25	80		25	80	μV/V
Long Term Stability	1000 hours @ TJ = 125°C		60			60		mV
Thermal Shutdown	$I_O = 5mA$		175			175		

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

NOTES

PRODUCT DATASHEET

CONNECTION DIAGRAMS & ORDERING INFORMATION (SEE NOTES BELOW)

Package	Part No.	Ambient Temperature Range	Connection Diagram
	SG79xxAK/883B	-55°C to 125°C	
	SG7905AK/DESC	-55°C to 125°C	GND
	SG7912AK/DESC	-55°C to 125°C	
	SG7915AK/DESC	-55°C to 125°C	
3-Terminal TO-3 Metal Can	SG79xxAK	-55°C to 125°C	
K – Package	SG79xxK/883B	-55°C to 125°C	
3.	JAN7905K	-55°C to 125°C	
	JAN7912K	-55°C to 125°C	V _{OUT}
	JAN7915K	-55°C to 125°C	Case is V _{IN}
	SG79xxK	-55°C to 125°C	2432 12 1114
	SG79xxAT/883B	-55°C to 125°C	
	SG7905AT/DESC	-55°C to 125°C	
	SG7912AT/DESC	-55°C to 125°C	
	SG7915AT/DESC	-55°C to 125°C	GND ()
3-Pin TO-39 Metal Can	SG79xxAT	-55°C to 125°C	
T – Package	SG79xxT/883B	-55°C to 125°C	$\sqrt{2}$
I - I ackage	JAN7905T	-55°C to 125°C	$V_{OUT} \bigcirc^2 \bigcirc^3 / V_{IN}$
	JAN7912T	-55°C to 125°C	
	JAN7915T	-55°C to 125°C	Case is V _{IN}
	SG79xxT	-55°C to 125°C	
	SG79xxAIG/883B	-55°C to 125°C	
	SG79XXAIG/863B	-55°C to 125°C	
	SG7912AIG/DESC	-55°C to 125°C	
3-Pin Hermetic TO-257	SG7915AIG/DESC	-55°C to 125°C	V _{OUT}
IG – Package (Isolated)	SG79xxAIG	-55°C to 125°C	GROUND
	SG79xxIG/883B	-55°C to 125°C	
	SG79xxIG/003B		
	SG79xxL/883B	-55°C to 125°C -55°C to 125°C	9 - 9 - 9
			0
	SG79xxL	-55°C to 125°C	3 2 1 20 19
	SG7905AL/DESC	-55°C to 125°C	V _o)4 18 N.C.
20-Pin Ceramic Leadless Chip	SG7912AL/DESC	-55°C to 125°C	V ₀ 5 17 d GROUND N.C. D6 16 d N.C.
Carrier	SG7912AL/DESC	-55°C to 125°C	N.C. p6 16 Q N.C. V ₀ SENSE D7 15 Q GROUND
L – Package			N.C. D8 14 (N.C.
			N.C.
			9 10 11 12 13
			ੁ ਹੁ ਹੁ ਹੁ ਤੂੰ ਤੂੰ ਤੂੰ ਤੂੰ See Notes 5 & 6
	SG79xxAG/883B	-55°C to 125°C	
	SG7905AG/DESC	-55°C to 125°C	
2 Die Harmatia TO 257	SG7912AG/DESC	-55°C to 125°C	V _{out}
3-Pin Hermetic TO-257	SG7915AG/DESC	-55°C to 125°C	V _{IN} GROUND
G – Package (Case is V _{IN})	SG79xxAG	-55°C to 125°C	
	SG79xxG/883B	-55°C to 125°C	Case is V _{IN}
	SG79xxG	-55°C to 125°C	

Note

- 1: Contact factory for JAN and DESC product availability.
- 2: All parts are viewed from the top.
- 3: "xx" to be replaced by output voltage of specific fixed regulator.
- 4: Some products will be available in hermetic flat pack (F). Consult factory for price and availability.
- 5: Both inputs and outputs must be externally connected together at the device terminals.
- 6: For normal operation, the V_O SENSE pin must be externally connected to the load.

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.