

128-Channel Serial to Parallel Converter with Push-Pull Outputs

Features

- · 128 High-Voltage Channels
 - Up to 80V Operating Output Voltage
 - 30 mA Peak Output Sink/Source Current
 - Output Diodes to Ground for Efficient Power Recovery
- · Four Separate Shift Registers
 - Clockwise and Counter-Clockwise Data Shifting via DIR Pin
- · 40 MHz Data Rate

Applications

- · Inkjet Printer Driver
- · Plasma Display Driver
- · 3D Printer Driver

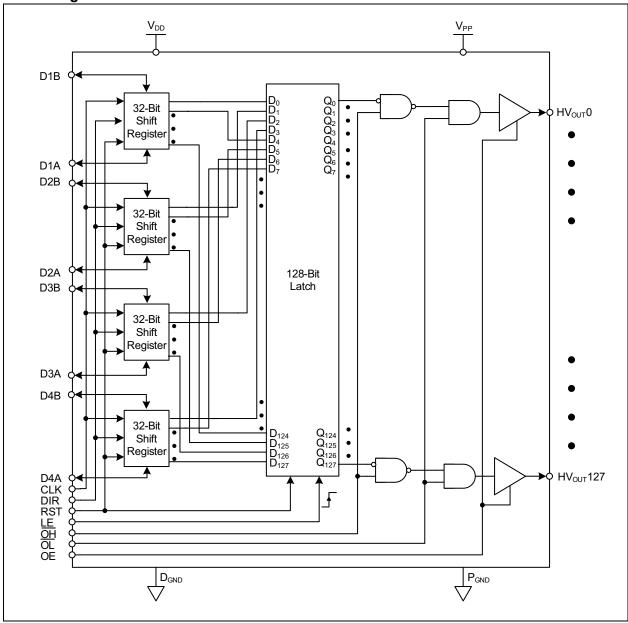
Related Devices

 HV582: 96-Channel Serial to Parallel Converter with Push-Pull Outputs

Description

HV583 is a unipolar, 128-channel low-voltage serial to high-voltage parallel converter with push-pull outputs. This device has been designed for applications requiring multiple high-voltage outputs with current sinking and sourcing capabilities, such as plasma displays and inkjet printers.

The device consists of four parallel 32-bit shift registers, a 128-bit latch and 128 high-voltage outputs. Data can be input at 40 MHz or up to 25 MHz when cascaded in a multiple device configuration.


HV583 is offered in a 169-ball $10 \times 10 \times 1.1 \text{ mm}$ TFBGA package.

Package Type

HV583 10x10x1.1 mm TFBGA* **Bottom View** 12 11 10 9 8 7 6 5 4 3 2 1 0000000000000 000000000000 0000000000000 000000000000 000000000000 0000000000000 0000000000000 0000000000000 000000000000 000000000000 000000000000 0000000000000 0000000000000 * See Section Section 2.0 "Package Pin Configurations

and Function Description"

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Rating†

Supply Voltage V _{DD}	0.5V to +6.5V
High-Voltage Supply V _{PP}	–0.5V to +90V
Output Sink and Source Current I _{OUT}	65 mA to +40 mA
Output Body Diode Current I _{DIODE}	65 mA to +65 mA
Logic Input Voltage	0.5V to V _{DD} +0.5V
Operating Junction Temperature	–25°C to +125°C
Storage Temperature	–40°C to +150°C

†Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device is ESD sensitive. Use appropriate ESD precautions.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
High-Voltage Supply	V _{PP}	15	-	80	V	
Low-Voltage Supply	V_{DD}	4.5	5.0	5.5	V	
HV _{OUT} Peak Output Current	I _{OUT}	-30	_	30	mA	
V _{PP} Power Supply Slew Rate	SR	-		8.0	V/µs	
Clock Frequency	f _{CLK}	-		40	MHz	Data Read
		-		25	MHz	Cascaded Devices

TABLE 1-1: POWER SEQUENCES

Sequence Type	Steps
Power-Up Sequence	1. Connect ground.
	2. Apply V _{DD.}
	3. Set all inputs (data, CLK, etc.) to a known state.
	4. Apply V _{PP} .
Power-Down Sequence	Repeat the power-up sequence in reverse order.

DC ELECTRICAL CHARACTERISTICS

Electrical specifications : Unless otherwise specified, $T_A = T_J = +25^{\circ}C$, $V_{DD} = 5.0V$ and $V_{PP} = 80V$.							
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
V _{PP} Quiescent Supply Current	I _{PPQ}		_	10	μA		
V _{DD} Quiescent Supply Current	I_{DDQ}	_	_	10	μA		
High-Level Output Voltage	HV _{OH}	73	76	_	V	I_{OUT} = 15 mA, V_{PP} = 80V	
		10	_			I_{OUT} = 10 mA, V_{PP} = 20V	
Output P-Channel Body Diode	HV _{OHD}		_	81.5	V	I _{OUT} = -30 mA, V _{PP} = 80V (Note 1)	
Low-Level Output Voltage	HV _{OL}		3.0	6.0	V	I _{OUT} = -15 mA	
Output N-Channel Body Diode	HV_{OLD}	-1.5	_	_	V	I _{OUT} = 30 mA (Note 1)	

Note 1: Specification is for design guidance only.

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical specifications : Unless otherwise specified, $T_A = T_J = +25$ °C, $V_{DD} = 5.0$ V and $V_{PP} = 80$ V.							
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
Logic Input High Voltage	V _{IH}	2.3	_	V_{DD}	V	V _{DD} = 4.5V to 5.5V	
Logic Input Low Voltage	V_{IL}	0	_	0.7		V _{DD} = 4.5V to 5.5V	
Logic Input High Current	I _{IH}		_	1.0	μA	V _{IH} = 5.3V, V _{DD} = 5.0V	
		10	30	60		V _{IH} = 5.0V, for DIR only	
Logic Input Low Current	I _{IL}	-1.0	_	_		V _{IL} = -0.3V	
Logic Output High	V _{OH}	4.5	_	_	V	I _{OUT} = 1.0 mA	
Logic Output Low	V_{OL}	_	_	0.5		I _{OUT} = -1.0 mA	

Note 1: Specification is for design guidance only.

AC ELECTRICAL CHARACTERISTICS

Electrical specifications : Unless otherwise specified $T_A = T_J = 25^{\circ}C$, $V_{DD} = 5.0V$ and $V_{PP} = 80V$						
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Clock Pulse Width, High and Low ⁽¹⁾	t _{wCLK}	10	1		ns	V _{DD} = 4.5V to 5.5V
LE Pulse Width, High and Low ⁽²⁾	t _{wLE}	10				$T_J = -25^{\circ}C \text{ to } +125^{\circ}C$
Setup Time, DnA/B to CLK ⁽¹⁾	t _{su1}	5				
Setup Time, CLK to LE ⁽¹⁾	t _{su2}	10	_	_		
Setup Time, LE to OL, OH(1)	t _{su3}	25	_			
Setup Time, RST to CLK ⁽²⁾	t _{su4}	5	_	_		
Setup Time, RST to LE ⁽²⁾	t _{su5}	5				
Hold Time, CLK to DnA/B ⁽¹⁾	t _{h1}	5	_			
Hold Time, LE to CLK ⁽¹⁾	t _{h2}	10	_	_		
Hold Time, CLK to RST ⁽²⁾	t _{h3}	5	_	_		
Hold Time, LE to RST ⁽²⁾	t _{h4}	5				
CLK to DnA/B (High-to-Low)	t _{pdHL}			25		C _L = 15 pF
CLK to DnA/B (Low-to-High)	t _{pdLH}			25		C _L = 15 pF
LE, OL, OH to HV _{OUT} n (High-to-Low)	t _{pHL}			150		C _L = 50 pF
LE, OL, OH to HV _{OUT} n (Low-to-High)	t _{pLH}	Typ-40	t _{pHL} + t _f	Typ+40		C _L = 80 pF
OE to HV _{OUT} n (High-to-Low)	t_{pHZL}		_	150		C _L = 50 pF
OE to HV _{OUT} n (Low-to-High)	t _{pLZH}	Typ-40	t _{pHL} + t _f	Typ+40		C _L = 80 pF
OE to HV _{OUT} n (High-to-Low)	t _{pHZ}			300		$R_L = 10K, C_L = 50 pF$
OE to HV _{OUT} n (Low-to-High)	t_{pLZ}	_	_	300		$R_L = 10K, C_L = 50 pF$
Rise Time HV _{OUT} n	t _r	_		120		C _L = 50 pF
Fall Time HV _{OUT} n	t _f	_	_	120		C _L = 50 pF

Note 1: Specification is obtained by characterization and is not 100% tested.

^{2:} Specification is for design guidance only.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges	Temperature Ranges						
Operating Junction Temperature	T_J	-25	_	+125	°C		
Storage Temperature	T _A	-4 0	_	+150	°C		
Package Thermal Resistance							
Thermal Resistance, 169-Ball TFBGA	θ_{JA}	_	27	_	°C/W		

1.1 Logic Characteristics

TABLE 1-2: SHIFT REGISTER TRUTH TABLE

DIR	CLK	State	Direction
L or Open		Shift	DnB to DnA
L or Open	7_	Hold	DnB to DnA
Н	4	Shift	DnA to DnB
Н		Hold	DnA to DnB

Legend:

D = Data

H = Level High

L = Level Low

X = Don't Care

Z = High Impedance

= Low-to-High Transition

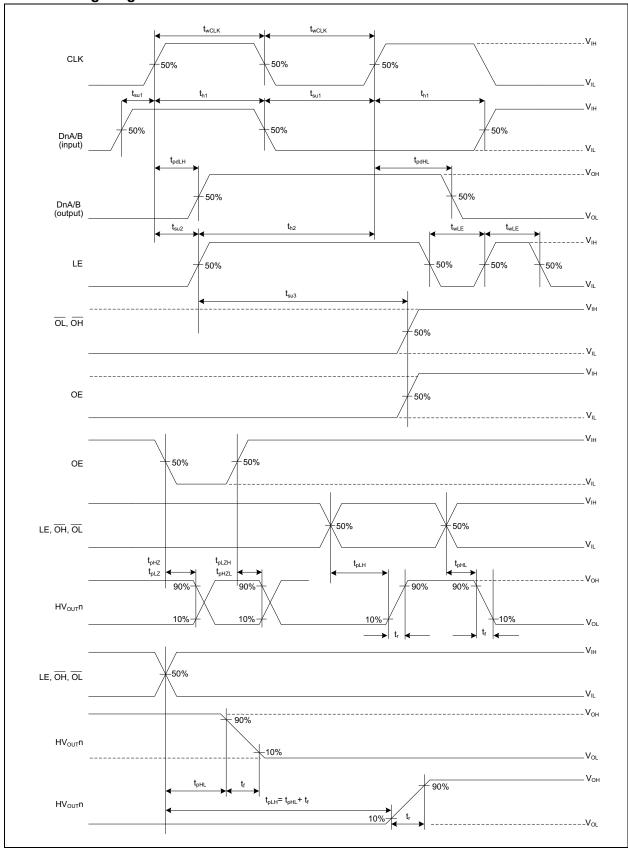
= High-to-Low Transition

TABLE 1-3: LATCH TRUTH TABLE

LE	Output State of Latch
L to H	Latch Execution
H to L	Hold

TABLE 1-4: HV_{OUT}n TRUTH TABLE

OE	OL	ОН	DnA/DnB	HV _{OUT} n
L	Х	Х	X	Z
Н	L	Х	X	L
Н	Н	L	X	Н
Н	Н	Н	L	L
Н	Н	Н	Н	Н


TABLE 1-5: RESET TRUTH TABLE

RST	CLK	LE	Shift Register	Latches
0		Х	Shift	Х
0	Х		Х	Latch
1		Х	Clear	Х
1	Х		Х	Clear

TABLE 1-6: OUTPUT SHIFT OPERATION

Input	Output	DIR	Shift Operation
D1A = D	D1B	Н	D to D124D0 to D1B
D2A = D	D2B	Н	D to D125D1 to D2B
D3A = D	D3B	Н	D to D126D2 to D3B
D4A = D	D4B	Н	D to D127D3 to D4B
D1B = D	D1A	L or Open	D to D0D124 to D1A
D2B = D	D2A	L or Open	D to D1D125 to D2A
D3B = D	D3A	L or Open	D to D2D126 to D3A
D4B = D	D4A	L or Open	D to D3D127 to D4A

1.2 Timing Diagram

2.0 PACKAGE PIN CONFIGURATIONS AND FUNCTION DESCRIPTION

This section details the pin designation for the 169-Ball TFBGA package (Figure 2-1). The descriptions of the pins are listed in Table 2-1.

Top View													
	1	2	3	4	5	6	7	8	9	10	11	12	13
A	HV _{out} 86	HV _{out} 85	HV _{OUT} 83	HV _{OUT} 80	HV _{out} 76	HV _{out} 71	HV _{out} 66	HV _{out} 61	HV _{OUT} 56	HV _{out} 51	HV _{out} 47	HV _{out} 44	O HV _{OUT} 42
В	HV _{OUT} 87	HV _{OUT} 84	HV _{OUT} 82	HV _{OUT} 79	HV _{OUT} 75	HV _{OUT} 70	HV _{OUT} 65	HV _{OUT} 60	HV _{OUT} 55	HV _{OUT} 50	O HV _{OUT} 46	O HV _{OUT} 43	HV _{OUT} 41
С	HV _{OUT} 89	HV _{OUT} 88	HV _{OUT} 81	HV _{OUT} 78	HV _{OUT} 74	HV _{OUT} 69	HV _{OUT} 64	HV _{OUT} 59	HV _{OUT} 54	HV _{OUT} 49	HV _{OUT} 45	HV _{OUT} 39	HV _{out} 40
D	HV _{OUT} 92	HV _{OUT} 91	HV _{OUT} 90	HV _{OUT} 77	HV _{OUT} 73	HV _{OUT} 68	HV _{OUT} 63	HV _{OUT} 58	HV _{OUT} 53	HV _{OUT} 48	HV _{OUT} 36	HV _{OUT} 37	HV _{OUT} 38
E	HV _{OUT} 96	HV _{OUT} 95	HV _{OUT} 94	HV _{OUT} 93	HV _{OUT} 72	HV _{OUT} 67	HV _{OUT} 62	HV _{OUT} 57	HV _{OUT} 52	HV _{OUT} 32	HV _{OUT} 33	HV _{OUT} 34	HV _{OUT} 35
F	HV _{OUT} 100	HV _{OUT} 99	HV _{OUT} 98	HV _{OUT} 97	$\bigvee_{V_{PP}}$	V_{pp}	$\bigvee_{V_{PP}}$	$\bigvee_{V_{PP}}$	$\bigvee_{V_{PP}}$	HV _{OUT} 28	HV _{OUT} 29	HV _{OUT} 30	HV _{OUT} 31
G	HV _{OUT} 104	HV _{OUT} 103	HV _{OUT} 102	HV _{OUT} 101	V_{PP}	V_{pp}	V_{PP}	$\bigvee_{V_{PP}}$	$\bigvee_{V_{PP}}$	HV _{OUT} 24	HV _{OUT} 25	HV _{OUT} 26	HV _{OUT} 27
Н	HV _{OUT} 108	HV _{OUT} 107	HV _{OUT} 106	HV _{OUT} 105	NC	P_{GND}	P_{GND}	P_{GND}	NC	HV _{OUT} 20	HV _{OUT} 21	HV _{OUT} 22	HV _{OUT} 23
J	HV _{OUT} 112	HV _{OUT} 111	HV _{OUT} 110	HV _{OUT} 109	P _{GND}	P _{GND}	P_{GND}	P _{GND}	P _{GND}	HV _{OUT} 16	HV _{OUT} 17	HV _{OUT} 18	HV _{OUT} 19
K	HV _{OUT} 115	HV _{OUT} 114	HV _{OUT} 113	NC	D _{GND}	V _{DD}	NC NC	V _{DD}	D_{GND}	HV _{out} 0	HV _{OUT} 13	HV _{OUT} 14	HV _{OUT} 15
L	HV _{OUT} 117	HV _{OUT} 116	HV _{OUT} 122	HV _{OUT} 125	D1A	D4A	OE OE	LE	D3B	HV _{out} 1	HV _{out} 4	HV _{OUT} 11	HV _{OUT} 12
M	HV _{OUT} 118	HV _{OUT} 120	HV _{OUT} 123	HV _{OUT} 126	D2A	⊙ ōL	DIR	CLK	D2B	HV _{out} 2	HV _{OUT} 5	HV _{out} 7	HV _{out} 10
N	HV _{OUT} 119	HV _{OUT} 121	HV _{OUT} 124	HV _{OUT} 127	D3A	○ OH	RST	D4B	D1B	HV _{OUT} 3	HV _{OUT} 6	HV _{OUT} 8	HV _{OUT} 9

FIGURE 2-1: 169-Ball TFBGA Package.

HV583

TABLE 2-1: PIN ASSIGNMENT

IADLL 2-		OOIOINIEINI	ı	1		1	1
Pin#	Name	Pin #	Name	Pin#	Name	Pin#	Name
A1	HV _{OUT} 86	D5	HV _{OUT} 73	H5, H9, K4, K7	NC	M8	CLK
A2	HV _{OUT} 85	D6	HV _{OUT} 68	H6, H7, H8, J5, J6, J7, J8, J9	P_{GND}	M9	D2B
A3	HV _{OUT} 83	D7	HV _{OUT} 63	H10	HV _{OUT} 20	M10	HV _{OUT} 2
A4	HV _{OUT} 80	D8	HV _{OUT} 58	H11	HV _{OUT} 21	M11	HV _{OUT} 5
A5	HV _{OUT} 76	D9	HV _{OUT} 53	H12	HV _{OUT} 22	M12	HV _{OUT} 7
A6	HV _{OUT} 71	D10	HV _{OUT} 48	H13	HV _{OUT} 23	M13	HV _{OUT} 10
A7	HV _{OUT} 66	D11	HV _{OUT} 36	J1	HV _{OUT} 112	N1	HV _{OUT} 119
A8	HV _{OUT} 61	D12	HV _{OUT} 37	J2	HV _{OUT} 111	N2	HV _{OUT} 121
A9	HV _{OUT} 56	D13	HV _{OUT} 38	J3	HV _{OUT} 110	N3	HV _{OUT} 124
A10	HV _{OUT} 51	E1	HV _{OUT} 96	J4	HV _{OUT} 109	N4	HV _{OUT} 127
A11	HV _{OUT} 47	E2	HV _{OUT} 95	J10	HV _{OUT} 16	N5	D3A
A12	HV _{OUT} 44	E3	HV _{OUT} 94	J11	HV _{OUT} 17	N6	OH
A13	HV _{OUT} 42	E4	HV _{OUT} 93	J12	HV _{OUT} 18	N7	RST
B1	HV _{OUT} 87	E5	HV _{OUT} 72	J13	HV _{OUT} 19	N8	D4B
B2	HV _{OUT} 84	E6	HV _{OUT} 67	K1	HV _{OUT} 115	N9	D1B
В3	HV _{OUT} 82	E7	HV _{OUT} 62	K2	HV _{OUT} 114	N10	HV _{OUT} 3
B4	HV _{OUT} 79	E8	HV _{OUT} 57	K3	HV _{OUT} 113	N11	HV _{OUT} 6
B5	HV _{OUT} 75	E9	HV _{OUT} 52	K5, K9	D _{GND}	N12	HV _{OUT} 8
B6	HV _{OUT} 70	E10	HV _{OUT} 32	K6, K8	V_{DD}	N13	HV _{OUT} 9
B7	HV _{OUT} 65	E11	HV _{OUT} 33	K10	HV _{OUT} 0		
B8	HV _{OUT} 60	E12	HV _{OUT} 34	K11	HV _{OUT} 13		
В9	HV _{OUT} 55	E13	HV _{OUT} 35	K12	HV _{OUT} 14		
B10	HV _{OUT} 50	F1	HV _{OUT} 100	K13	HV _{OUT} 15		
B11	HV _{OUT} 46	F2	HV _{OUT} 99	L1	HV _{OUT} 117		
B12	HV _{OUT} 43	F3	HV _{OUT} 98	L2	HV _{OUT} 116		
B13	HV _{OUT} 41	F4	HV _{OUT} 97	L3	HV _{OUT} 122		
C1	HV _{OUT} 89	F5, F6, F7, F8, F9, G5, G6, G7, G8, G9	V _{PP}	L4	HV _{OUT} 125		
C2	HV _{OUT} 88	F10	HV _{OUT} 28	L5	D1A		
C3	HV _{OUT} 81	F11	HV _{OUT} 29	L6	D4A		
C4	HV _{OUT} 78	F12	HV _{OUT} 30	L7	OE		
C5	HV _{OUT} 74	F13	HV _{OUT} 31	L8	LE		
C6	HV _{OUT} 69	G1	HV _{OUT} 104	L9	D3B		
C7	HV _{OUT} 64	G2	HV _{OUT} 103	L10	HV _{OUTN} 1		
C8	HV _{OUT} 59	G3	HV _{OUT} 102	L11	HV _{OUT} 4		
C9	HV _{OUT} 54	G4	HV _{OUT} 101	L12	HV _{OUT} 11		
C10	HV _{OUT} 49	G10	HV _{OUT} 24	L13	HV _{OUT} 12		
C11	HV _{OUT} 45	G11	HV _{OUT} 25	M1	HV _{OUT} 118		
C12	HV _{OUT} 39	G12	HV _{OUT} 26	M2	HV _{OUT} 120		
C13	HV _{OUT} 40	G13	HV _{OUT} 27	M3	HV _{OUT} 123		
D1	HV _{OUT} 92	H1	HV _{OUT} 108	M4	HV _{OUT} 126		
D2	HV _{OUT} 91	H2	HV _{OUT} 107	M5	D2A		
D3	HV _{OUT} 90	H3	HV _{OUT} 106	M6	OL		
D4	HV _{OUT} 77	H4	HV _{OUT} 105	M7	DIR		

2.1 High-Voltage Output Pins (HV_{OUT}0 to HV_{OUT}127)

These are the high-voltage output channels (Push-Pull).

2.2 High-Voltage Power Supply Pins (V_{DP})

High-voltage power supply pins for the output channels $(HV_{OUT}n)$.

2.3 No Connection Pins (NC)

NC pins do not have any functionality on the IC. These pins should not be connected.

2.4 High-Voltage Ground Pins (P_{GND})

High-voltage ground pins provide the reference ground level for the high-voltage output channels.

2.5 Digital Logic Ground Pins (D_{GND})

Digital Logic Ground pins provide a reference ground level for the low-voltage section of the IC, shift-registers, latches and decoders.

2.6 Logic Power Supply Pins (V_{DD})

Logic power supply pins for the 32-bit shift registers, 128-bit latch and decoders.

2.7 Data Input/Output Pins (D1A, D2A, D3A, D4A)

Data Input/Output pins are configurable as inputs or outputs for the shift registers depending on the state of the Direction pin (DIR).

When DIR is High, pins D1A to D4A are configured as inputs to the data shift registers. When DIR is Low, these pins are configured as outputs of the data shift registers.

2.8 Output Enable Pin (OE)

The Output Enable pin controls the functionality of the high-voltage output channels.

When OE is High, all HV $_{OUT}$ n channels are enabled and form a push-pull configuration to operate according to input data, OL or OH configuration states. When OE is Low, all HV $_{OUT}$ n channels are forced to a high-impedance state, regardless of the data stored in the 128-bit latch or the state of the \overline{OL} and \overline{OH} pins.

2.9 Latch Enable Pin (LE)

The Latch Enable pin controls the data transfer from the input shift registers to the 128-bit latch and the ${\rm HV}_{\rm OUT}$ n channels.

When LE transitions from Low to High (rising edge), data is transferred from the 128-bit data latch to the HV_{OUT} n output channels. When LE is Low, new data can be clocked into the shift registers.

2.10 Data Input/Output Pins (D1B, D2B, D3B, D4B)

Data Input/Output pins are configurable as inputs or outputs for the shift registers, depending on the state of the Direction pin (DIR).

When DIR is Low, pins D1B to D4B are configured as inputs to the data shift registers. When DIR is High, pins are configured as outputs of the data shift registers.

2.11 Output Low Pin (OL)

The Output Low pin sets all high-voltage output channels ($HV_{OUT}0$ to $HV_{OUT}127$) to a Low-level state (P_{GND}).

When \overline{OL} is set Low and OE is High, all the HV_{OUT}n channels are forced to a Low-level state (P_{GND}), regardless of the data stored in the 128-bit latch.

2.12 Direction Pin (DIR)

The DIR pin controls the direction of the input data flow for the input registers, whether it is clockwise (DnB to DnA) or counter-clockwise (DnA to DnB).

When the DIR pin is set High, data flows from DnA to DnB. When DIR pin is set Low, data flows from DnB to DnA. See Table 1-6 for more information.

2.13 Clock Input Pin (CLK)

This is the Clock Input pin for 32-bit input shift registers.

2.14 Output High Pin (OH)

The Output High pin sets all high-voltage output channels (HV_{OUT} 0 to HV_{OUT} 127) to a High-level state (V_{PP}).

When \overline{OH} is Low while OE and \overline{OL} are High, all the HV_{OUT}n channels are forced to a High-level state (V_{PP}), regardless of the data stored in the 128-bit latch. See Table 1-4 for more information.

2.15 Reset Pin (RST)

The RST pin clears shift registers and the 128-bit latch data content when it is set High during the rising edge of the CLK and LE, respectively. See Table 1-5 for more information.

3.0 FUNCTIONAL DESCRIPTION

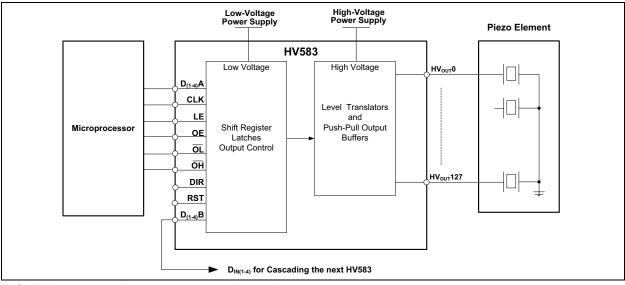
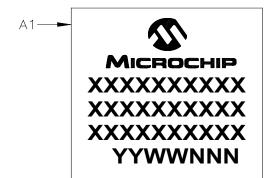
The HV583 is a unipolar, 128-channel, low-voltage serial to high-voltage parallel converter. The device consists of four parallel 32-bit shift registers, a 128-bit latch and 128 high-voltage outputs.

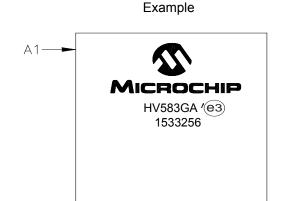
The four independent shift registers allow data to be updated into the 128-bit latch at four times the speed of a single register, providing a fast update rate for the 128 output channels. The 128-bit latch holds the data for the high-voltage output channels, whether it is a High-level or Low-level state. The flow of the input data can switch direction from clockwise (DnB to DnA) to counter-clockwise (DnA to DnB) by controlling the DIR pin. A reset pin (RST) is provided to clear the contents of the latches. All channels can be set at the same time to a high-impedance state (high Z), Low-level state, or High-level state through the OE, OL and OH pins, respectively.

The high-output voltages (HV_{OUT}n) can operate from 15V-80V with a maximum current source and sink capability of 30 mA.

3.1 Application Information

HV583 is designed for applications requiring multiple high-voltage outputs with current sinking and sourcing capabilities in the range of ±30 mA. Typical applications where the HV583 is utilized are in plasma displays, Inkjet printer drivers and 3D printer drivers.


FIGURE 3-1: Typical Application Block Diagram.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

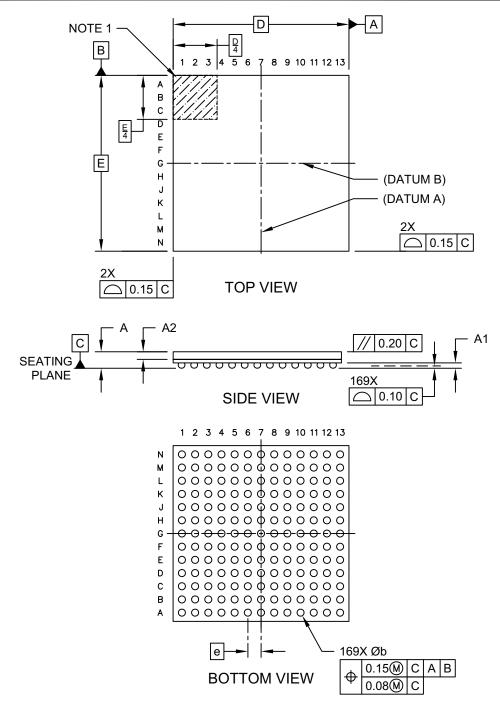
169-Ball TFBGA (10 x10 x1.1 mm)

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

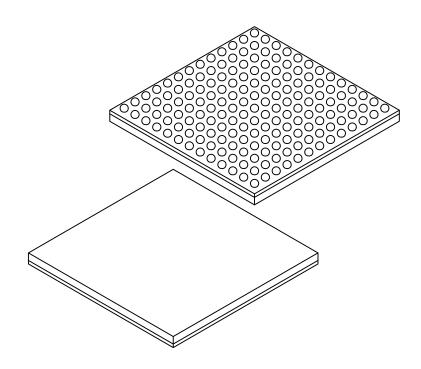
(e3) Pb-free JEDEC designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

lote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

169-Ball Thin Fine Pitch Ball Grid Array (7G) - 10x10x1.10 mm Body [TFBGA] (Complies with JEDEC Terminal Assignment recommendations)


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-377-J Rev C Sheet 1 of 2

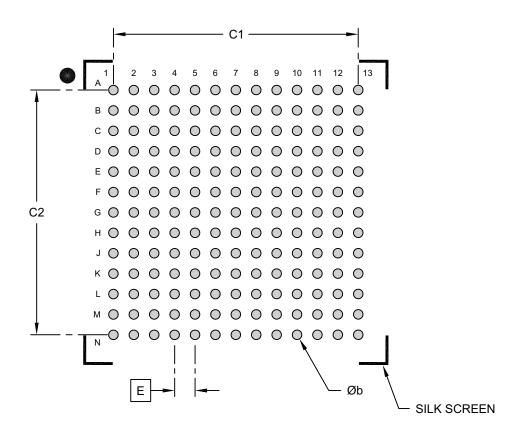
169-Ball Thin Fine Pitch Ball Grid Array (7G) - 10x10x1.10 mm Body [TFBGA] (Complies with JEDEC Terminal Assignment recommendations)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER:	S	
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N	169			
Pitch	е	0.75 BSC			
Overall Height	Α	-	-	1.10	
Standoff	A1	0.21	0.32	1	
Mold Cap Thickness	A2	0.50	0.45	0.50	
Overall Length	D	10.00			
Overall Width	Е	10.00			
Ball Diameter	b	0.35	0.40	0.45	

Notes:

- 1. Terminal A1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-377-J Rev C Sheet 2 of 2

169-Ball Thin Fine Pitch Ball Grid Array (7G) - 10x10x1.10 mm Body [TFBGA] (Complies with JEDEC Terminal Assignment recommendations)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	M	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.75 BSC	
Contact Pad Spacing	C1		9.00	
Contact Pad Spacing	C2		9.00	
Contact Pad Diameter (X169)	b		0.35	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2377-J Rev C

APPENDIX A: REVISION HISTORY

Revision B (February 2017)

The following is the list of modifications:

- Updated AC Electrical Characteristics table.
- Minor typographical corrections.

Revision A (December 2015)

· Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	XX-X Package	Examples: a) HV583GA-G: 169-Ball 10x10 TFBGA package
Device:	HV583: Low-Voltage Serial to High-Voltage Parallel Converter with HV Outputs	
Package:	GA-G = Thin Fine Pitch Ball Grid Array - 10 x 10 x 1.1 mm Body, 169-lead (TFBGA)	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1394-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Harbour City, Kowloon

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000

Fax: 86-21-3326-8021

China - Shenyang
Tel: 86-24-2334-2829

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820