Supertex inc.

N-Channel Depletion-Mode

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on-resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- Telecom

Ordering Information

Part Number	Package Option	Packing
DN2535N3-G	TO-92	1000/Bag
DN2535N3-G P002		
DN2535N3-G P003		
DN2535N3-G P005	TO-92	2000/Reel
DN2535N3-G P013		
DN2535N3-G P014		
DN2535N5-G	TO-220	50/Tube

-G denotes a lead (Pb)-free / RoHS compliant package. Contact factory for Wafer / Die availablity. Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSX}
Drain-to-gate voltage	BV _{DGX}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C

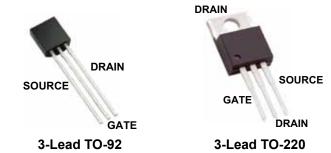
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

Package	$oldsymbol{ heta}_{ja}$
TO-92	132°C/W
TO-220	29°C/W

Doc.# DSFP-DN2535 B062813

General Description

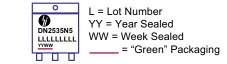

The Supertex DN2535 is a low threshold depletion mode (normally-on) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Product Summary

BV_{DSX}/BV_{DGX}	R _{DS(ON)} (max)	l _{DSS} (min)
350V	25Ω	150mA

Pin Configuration


Product Marking

SiDN							
2535							
YYWW							

YY = Year Sealed WW = Week Sealed _____ = "Green" Packaging

Package may or may not include the following marks: Si or

3-Lead TO-92

Package may or may not include the following marks: Si or 🎲

3-Lead TO-220

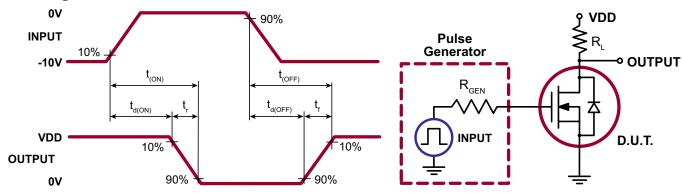
Thermal Characteristics

Package	Ι _D (continuous) [†]	Ι _D (pulsed)	Power Dissipation @T _c = 25°C	l _{DR} [†]	I DRM
TO-92	120mA	500mA	1.0W	120mA	500mA
TO-220	500mA	500mA	15W	500mA	500mA

Notes:

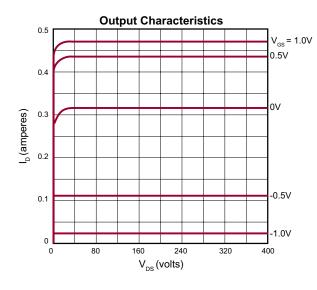
† I_{D} (continuous) is limited by max rated T_{i}

Electrical Characteristics (T_A = 25°C unless otherwise specified)

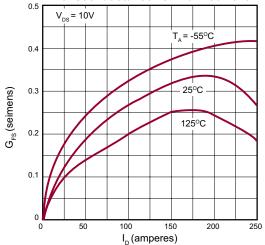

Sym	Parameter	Min	Тур	Max	Units	Conditions			
BV _{DSX}	Drain-to-source breakdown voltage	350	-	-	V	V _{GS} = -5.0V, I _D = 100µA			
V _{GS(OFF)}	Gate-to-source off voltage	-1.5	-	-3.5	V	V _{DS} = 25V, I _D = 10μA			
$\Delta V_{GS(OFF)}$	Change in $V_{GS(OFF)}$ with temperature	-	-	-4.5	mV/ºC	V _{DS} = 25V, Ι _D = 10μΑ			
I _{GSS}	Gate body leakage current	-	-	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$			
		-	-	10	μA	V_{DS} = Max rating, V_{GS} = -10V			
I _{D(OFF)}	Drain-to-source leakage current	-	-	1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = -10V$, $T_{A} = 125^{\circ}C$			
I _{DSS}	Saturated drain-to-source current	150	-	-	mA	$V_{\rm GS} = 0$ V, $V_{\rm DS} = 25$ V			
R _{DS(ON)}	Static drain-to-source on-state resistance	-	17	25	Ω	$V_{gs} = 0V, I_{p} = 120mA$			
$\Delta R_{DS(ON)}$	Change in $R_{DS(ON)}$ with temperature	-	-	1.1	%/°C	V _{GS} = 0V, I _D = 120mA			
G _{FS}	Forward transconductance	-	325	-	mmho	V _{DS} = 10V, I _D = 100mA			
C _{ISS}	Input capacitance	-	200	300		V _{GS} = -10V,			
C _{oss}	Common source output capacitance	-	12	30	pF	$V_{\rm DS}^{\rm o} = 25 V,$			
C _{RSS}	Reverse transfer capacitance	-	1.0	5.0		f = 1.0MHz			
t _{d(ON)}	Turn-on delay time	-	-	10					
t,	Rise time	-	-	15	20	$V_{DD} = 25V,$			
t _{d(OFF)}	Turn-off delay time	-	-	15	ns	I _D = 150mA, R _{GEN} = 25Ω,			
t,	Fall time	-	-	20		GEN ,			
V _{SD}	Diode forward voltage drop	-	-	1.8	V	V _{GS} = -10V, I _{SD} = 120mA			
t _{rr}	Reverse recovery time	-	800	-	ns	V _{GS} = -10V, I _{SD} = 1.0A			

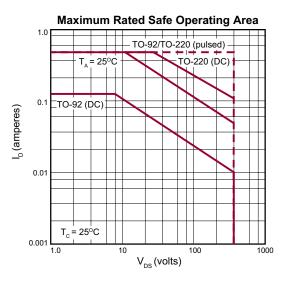
Notes:

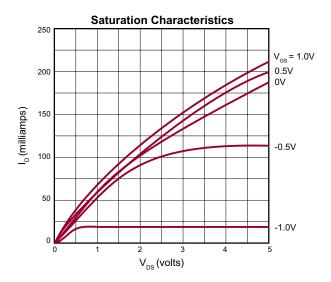
1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

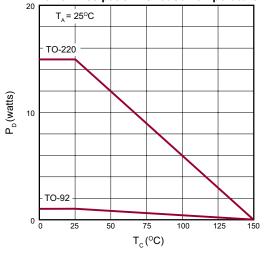

2. All A.C. parameters sample tested.

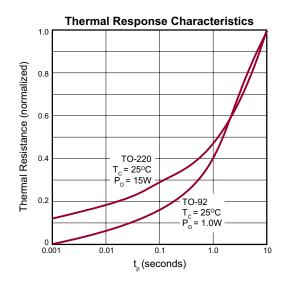
Switching Waveforms and Test Circuit

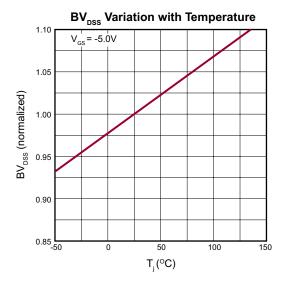


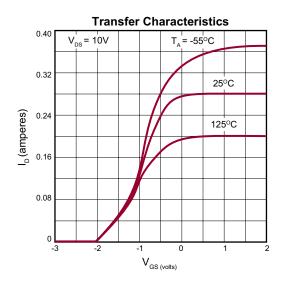

Doc.# DSFP-DN2535 B062813

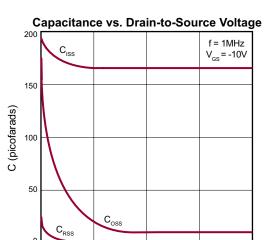

Typical Performance Curves


Transconductance vs. Drain Current



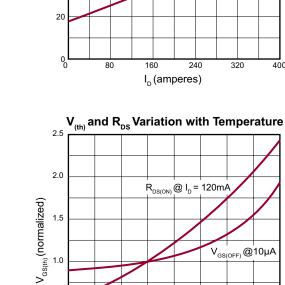

Power Dissipation vs. Case Temperature





400

Typical Performance Curves (cont.)



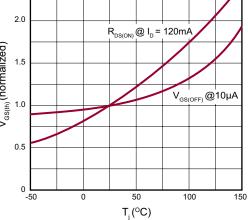
20

 $V_{_{DS}}(volts)$

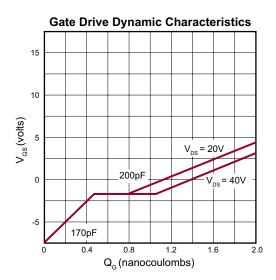
30

40

100


80

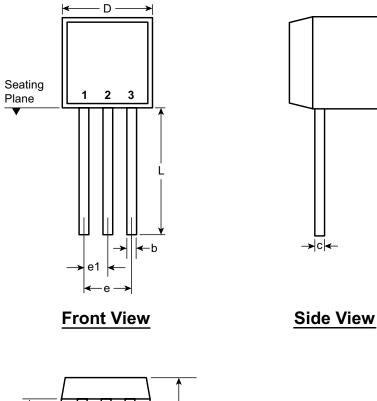
60

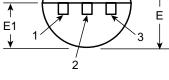

40

R_{Dss(on)} (ohms)

 $V_{GS} = 0V$

On-Resistance vs. Drain Current


Doc.# DSFP-DN2535 B062813


0 ō

10

A

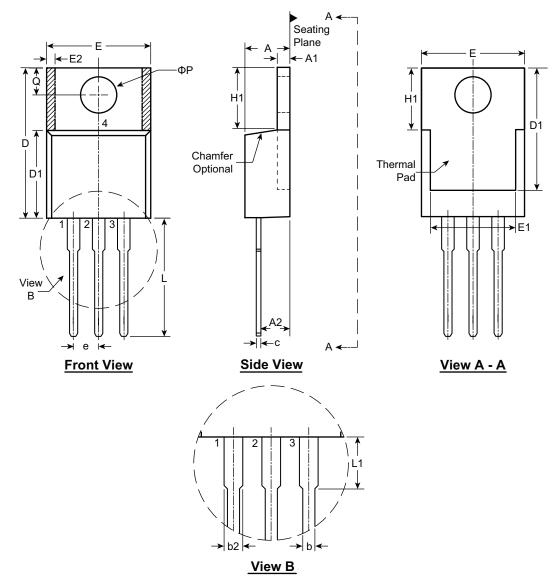
3-Lead TO-92 Package Outline (N3)

Bottom View

Symbol		Α	b	С	D	E	E1	е	e1	L
Dimensions (inches)	MIN	.170	.014†	.014†	.175	.125	.080	.095	.045	.500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022†	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the JEDEC drawing.


† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc.#: DSPD-3TO92N3, Version E041009.

Downloaded from Arrow.com.

Symbo	ol	Α	A1	A2	b	b2	С	D	D1	D2	Е	E1	E2	е	H1	L	L1	Q	ΦΡ
Dimen-	MIN	.140	.020	.080	.015	.045	.012†	.560	.326†	.474†	.380	.270	0.20*		.230	.500	.200*	.100	.139
sion	NOM	-	-	-	.027	.057	-	-	-	-	-	-	-	.100 BSC	-	-	-	-	-
(inches)	MAX	.190	.055	.120†	.040	.070	.024	.650	.361†	.507	.420	.350	.030		.270	.580	.250	.135	.161

JEDEC Registration TO-220, Variation AB, Issue K, April 2002.

* This dimension is not specified in the JEDEC drawing.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc. #: DSPD-3TO220N5, Version C041009.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.