

APT75F50B2 APT75F50L

500V, 75A, 0.075 Ω Max, t_{rr} \leq 310ns

N-Channel FREDFET

Power MOS 8TM is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr}, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- Fast switching with low EMI
- Low t_{rr} for high reliability
- Ultra low C_{rss} for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant 🥖

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I _D	Continuous Drain Current @ $T_{C} = 25^{\circ}C$	75	
	Continuous Drain Current @ T _C = 100°C	47	А
I _{DM}	Pulsed Drain Current [®]	230	
V_{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	1580	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	37	А

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit	
P _D	Total Power Dissipation @ $T_{C} = 25^{\circ}C$			1040	W	
R _{eJC}	Junction to Case Thermal Resistance			0.12 °C/W		
$R_{ ext{ heta}CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		0/10	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	- °C	
TL	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.22		οz	
ΥT			6.2		g	
Torque	Mounting Targue (TO 064Dagkage) 4.40 or M2 agrou			10	in∙lbf	
	Mounting Torque (TO-264Package), 4.40 or M3 screw			1.1	N∙m	

Static Characteristics

$T_{.1} = 25^{\circ}C$ unless otherwise specified

APT75F50B2 L

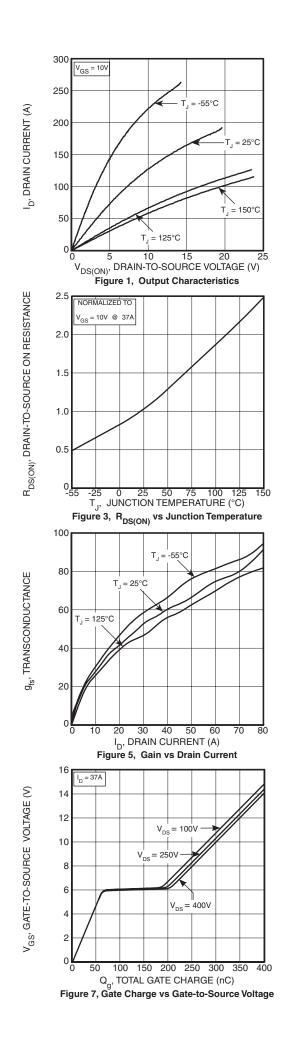
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	500			V
$\Delta V_{BR(DSS)} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250 \mu A$		0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	$V_{GS} = 10V, I_{D} = 37A$		0.064	0.075	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$	2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient			-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ $T_{J} = 25^{\circ}C$			250	μA
DSS		$V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

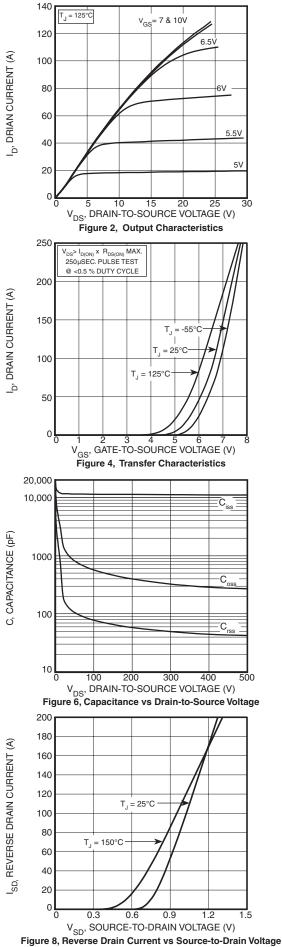
Dynamic Characteristics

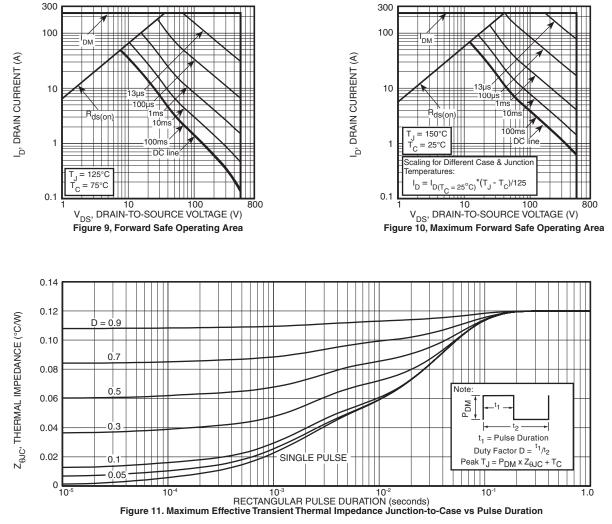
$T_J = 25^{\circ}C$ unless otherwise specified

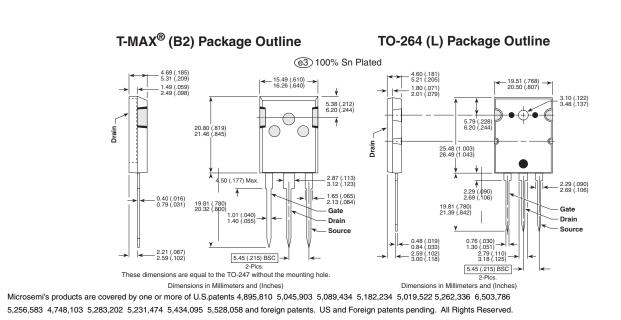
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 37A$		55		S
C _{iss}	Input Capacitance			11600		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		160		
C _{oss}	Output Capacitance	1 - 110112		1250		pF
C _{o(cr)} ⊕	Effective Output Capacitance, Charge Related	$V_{GS} = 0V, V_{DS} = 0V$ to 333V		725		
C _{o(er)} (5)	Effective Output Capacitance, Energy Related			365		
Qg	Total Gate Charge			290		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 37A,$ $V_{DS} = 250V$		65		nC
Q _{gd}	Gate-Drain Charge	V _{DS} = 250V		130		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		45		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 37A		55		
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{0}}, V_{GG} = 15V$		120		ns
t _f	Current Fall Time			39		

Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			75	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)			230	
V _{SD}	Diode Forward Voltage	$I_{SD} = 37A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.2	V
t _{rr}	Reverse Recovery Time	$T_{J} = 25^{\circ}C$			310 570	20
۲r		T _J = 125°C				ns
Q _{rr}	Deverse Desevery Charge	$I_{SD} = 37A^{(3)}$ $T_J = 25^{\circ}C$		1.48		
~rr	Reverse Recovery Charge	$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		3.85		μC
1	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$		11.3		А
rrm		$T_J = 125^{\circ}C$		16.6		А
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 37A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 333V$, $T_{J} = 125^{\circ}C$			20	V/ns


(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.


- (2) Starting at $T_J = 25^{\circ}$ C, L = 2.31mH, $R_G = 25\Omega$, $I_{AS} = 37$ A.
- (3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. (5) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. To calculate $C_{o(cr)}$ for any value of $V_{\text{DS}}^{(c)}$ less than $V_{(\text{BR})\text{DSS}}$, use this equation: $C_{o(er)} = -1.65\text{E}-7/V_{\text{DS}}^{2} + 5.51\text{E}-8/V_{\text{DS}} + 2.03\text{E}-10$.


6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

