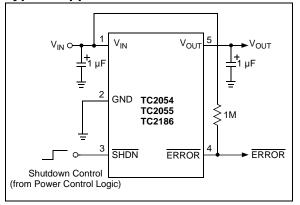


50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output

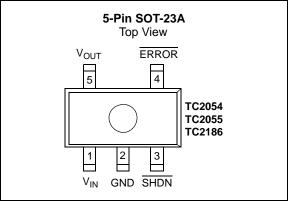

Features

- Low Supply Current (55 µA Typical) for Longer Battery Life
- Low Dropout Voltage: 140 mV (Typical) @ 150 mA
- High Output Voltage Accuracy: ±0.4% (Typical)
- Standard or Custom Output Voltages
- Power-Saving Shutdown Mode
- ERROR Output Can Be Used as a Low Battery Detector or Processor Reset Generator
- Fast Shutdown Reponse Time: 60 µs (Typical)
- Overcurrent and Overtemperature Protection
- Space-Saving 5-Pin SOT-23A Package
- Pin Compatible Upgrades for Bipolar Regulators
- Standard Output Voltage Options:
 - 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 5.0V

Applications

- Battery Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular / GSMS / PHS Phones
- Pagers

Typical Application


General Description

The TC2054, TC2055 and TC2186 are high accuracy (typically $\pm 0.4\%$) CMOS upgrades for older (bipolar) low dropout regulators. Designed specifically for battery-operated systems, the devices' total supply current is typically 55 μ A at full load (20 to 60 times lower than in bipolar regulators).

The devices' key features include low noise operation, low dropout voltage – typically 45 mV (TC2054); 90 mV (TC2055); and 140 mV (TC2186) at full load - and fast response to step changes in load. An error output (ERROR) is asserted when the devices are out-of-regulation (due to a low input voltage or excessive output current). Supply current is reduced to 0.5 μ A (maximum) and both V_{OUT} and ERROR are disabled when the shutdown input is low. The devices also incorporate overcurrent and overtemperature protection.

The TC2054, TC2055 and TC2186 are stable with a low esr ceramic output capacitor of 1 μ F and have a maximum output current of 50 mA, 100 mA and 150 mA, respectively. This LDO Family also features a fast response time (60 μ s typically) when released from shutdown.

Package Type

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage	6.5V
Output Voltage	(-0.3) to (V _{IN} + 0.3)
Operating Temperature	40°C < T _J < 125°C
Storage Temperature	65°C to +150°C
Maximum Voltage on Any Pin	V _{IN} +0.3V to -0.3V

ELECTRICAL SPECIFICATIONS

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods my affect device reliability.

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_L = 3.3 \ \mu$ F, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}$ C. BOLDFACE type specifications apply for junction temperature of -40^{\circ}C to +125^{\circ}C.						
Parameter	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.7	—	6.0	V	Note 1
Maximum Output Current		50	_	_	mA	TC2054

input operating voltage	* IN	2.1		0.0	v	
Maximum Output Current	IOUT _{MAX}	50	_	_	mA	TC2054
		100	_	_		TC2055
		150	_	—		TC2186
Output Voltage	V _{OUT}	V _R - 2.0%	$V_R \pm 0.4\%$	V _R + 2.0%	V	Note 2
V _{OUT} Temperature	TCV _{OUT}	_	20	_	ppm/°C	Note 3
Coefficient		_	40	—		
Line Regulation	ΔV _{OUT} / ΔV _{IN}	—	0.05	0.5	%	$(V_R + 1V) \le V_{IN} \le 6V$
Load Regulation	ΔV _{OUT} /	-1.0	0.33	+1.0	%	TC2054;TC2055 $I_L = 0.1$ mA to IOUT _{MAX}
	V _{OUT}	-2.0	0.43	+2.0		TC2186 $I_L = 0.1 \text{ mA to IOUT}_{MAX}$
						Note 6
Dropout Voltage, Note 7	$V_{IN} - V_{OUT}$	—	2	—	mV	I _L = 100 μA
		—	45	70		I _L = 50 mA
		—	90	140		TC2015; TC2185 I _L = 100 mA
		—	140	210		TC2185 I _L = 150 mA
						Note 7
Supply Current	I _{IN}	—	55	80	μA	$\overline{\text{SHDN}} = V_{\text{IH}}, I_{\text{L}} = 0$
Shutdown Supply Current	I _{INSD}	_	0.05	0.5	μA	SHDN = 0V
Power Supply Rejection Ratio	PSRR	_	50	_	dB	$F_{RE} \le 100 \text{ kHz}$
Output Short Circuit Current	I _{OUTSC}	160	300	_	mA	V _{OUT} = 0V

Note 1: The minimum V_{IN} has to meet two conditions: $V_{IN} = 2.7V$ and $V_{IN} = V_R + V_{DROPOUT}$.

2: V_R is the regulator output voltage setting. For example: $V_R = 1.8V$, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.

$$V_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^6}{V_{OUTMAX} + V_{OUTMIN} \times 10^6}$$

4: 5:

- $\frac{V_{OUT} \times \Delta T}{V_{OUT} \times \Delta T}$
- **6:** Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V differential.
- 8: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{MAX} at V_{IN} = 6V for T = 10 ms.
- **9:** The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}).
- **10:** Hysteresis voltage is referenced by V_R.
- **11:** Time required for V_{OUT} to reach 95% of V_R (output voltage setting), after V_{SHDN} is switched from 0 to V_{IN} .

ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_R + 1V$, $I_L = 100 \mu A$, $C_L = 3.3 \mu F$, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$. **BOLDFACE** type specifications apply for junction temperature of -40°C to +125°C.

BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.						
Parameter	Sym	Min	Тур	Max	Units	Conditions
Thermal Regulation	$\Delta V_{\text{OUT/}} \Delta P_{\text{D}}$		0.04		V/W	Note 8
Thermal Shutdown Die Temperature	T _{SD}	_	160	_	°C	
Output Noise	eN	_	600	_	nV / √Hz	$I_L = I_{OUT_{MAX}}, F = 10 \text{ kHz}$
Response Time (from Shutdown Mode)	t _R	_	60	_	μs	V _{IN} = 4V C _{IN} = 1 μF, C _{OUT} = 10 μF I _L = 0.1 mA, Note 11
SHDN Input						
SHDN Input High Threshold	VIH	60	—	_	%V _{IN}	V _{IN} = 2.5V to 6.0V
SHDN Input Low Threshold	V _{IL}	_	—	15	%V _{IN}	V _{IN} = 2.5V to 6.0V
ERROR OUTPUT						
Minimum V _{IN} Operating Voltage	V _{INMIN}	1.0	—	—	V	I _{OL} = 0.1 mA
Output Logic Low Voltage	V _{OL}	_	—	400	mV	1 mA Flows to ERROR, $I_{OL} = 1$ mA, $V_{IN} = 2V$
ERROR Threshold Voltage	V _{TH}	—	0.95 x V _R	_	V	See Figure 4-2
ERROR Positive Hysteresis	V _{HYS}		50		mV	Note 10
V _{OUT} to ERROR Delay	t _{DELAY}		2	_	ms	V_{OUT} from $V_{R} = 3V$ to 2.8V
Resistance from ERROR to GND	RERROR	_	126	_	Ω	V _{DD} = 2.5V, V _{OUT} = 2.5V

Note 1: The minimum V_{IN} has to meet two conditions: $V_{IN} = 2.7V$ and $V_{IN} = V_R + V_{DROPOUT}$.

 V_R is the regulator output voltage setting. For example: V_R = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V. 2:

3:
$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^{6}}{V_{OUT} \times \Delta T}$$

5: $V_{OUT} \times \Delta T$

5:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested 6: over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

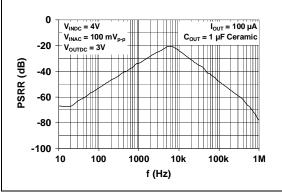
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal 7: value at a 1V differential.

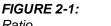
8: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{MAX} at V_{IN} = 6V for T = 10 ms.

9: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A , T_J , θ_{JA}).

10: Hysteresis voltage is referenced by V_R .

11: Time required for V_{OUT} to reach 95% of V_R (output voltage setting), after V_{SHDN} is switched from 0 to V_{IN}.


TEMPERATURE CHARACTERISTICS


Electrical Specifications: Unless otherwise noted, $V_{DD} = +2.7V$ to +6.0V and $V_{SS} = GND$.						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges:						
Extended Temperature Range	T _A	-40	—	+125	°C	
Operating Temperature Range	T _A	-40	—	+125	°C	
Storage Temperature Range	T _A	-65	—	+150	°C	
Thermal Package Resistances:						
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	255	_	°C/W	

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, SHDN > V_{IH} , $T_A = +25^{\circ}$ C.

Power Supply Rejection

Ratio.

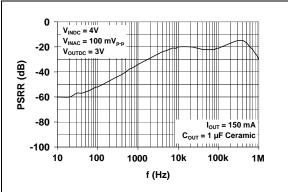
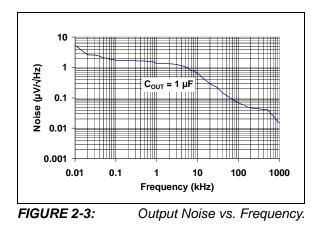



FIGURE 2-2: Power Supply Rejection Ratio.

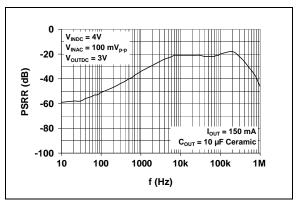


FIGURE 2-4: Power Supply Rejection Ratio.

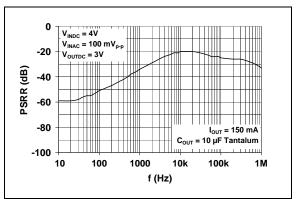
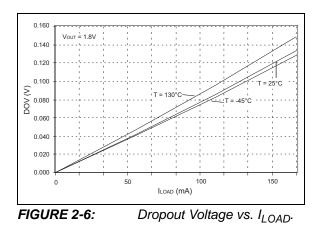



FIGURE 2-5: Power Supply Rejection Ratio.

© 2009 Microchip Technology Inc.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$.

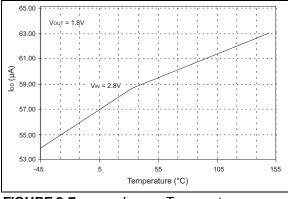


FIGURE 2-7:

I_{DD} vs. Temperature.

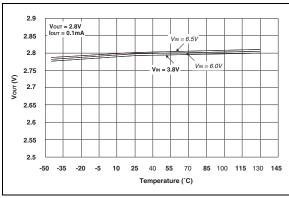
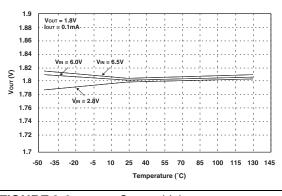



FIGURE 2-8: Temperature.

Output Voltage vs.

FIGURE 2-9: Output Voltage vs. Temperature.

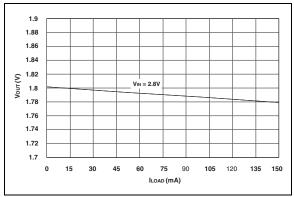


FIGURE 2-10: Output Voltage vs. Output Current.



FIGURE 2-11: Output Voltage vs. Supply Voltage.

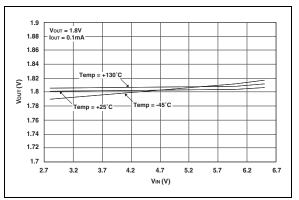
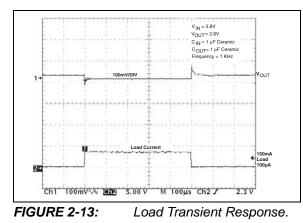



FIGURE 2-12: Dropout Voltage vs. Supply Voltage.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$.

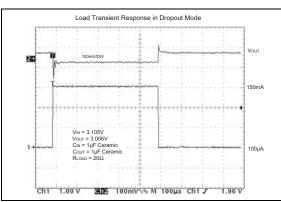
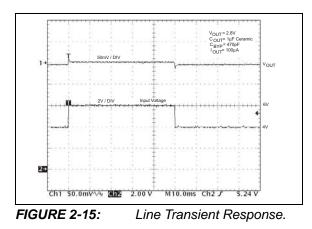



FIGURE 2-14: Load Transient Response in Dropout Mode.

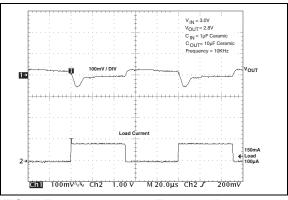
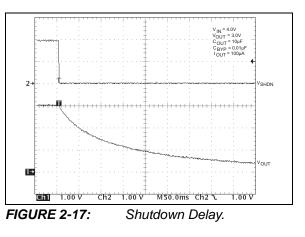
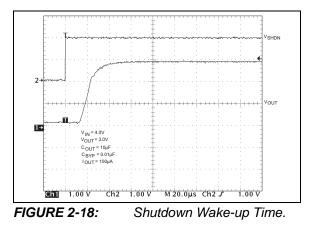




FIGURE 2-16: Load Tr

Load Transient Response.

Note: Unless otherwise indicated, V_{IN} = V_R + 1V, I_L = 100 μ A, C_{OUT} = 3.3 μ F, SHDN > V_{IH}, T_A = +25°C.

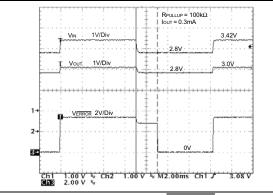


FIGURE 2-19: V_{OUT} to ERROR Delay.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

Pin Number	Symbol	Description
1	V _{IN}	Unregulated supply input.
2	GND	Ground terminal.
3	SHDN	Shutdown control input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, output voltage falls to zero, ERROR is open circuited and supply current is reduced to $0.5 \ \mu$ A (maximum).
4	ERROR	Out-of-Regulation Flag. (Open-drain output). This output goes low when V_{OUT} is out-of-tolerance by approximately -5%.
5	V _{OUT}	Regulated voltage output.

TABLE 3-1:PIN FUNCTION TABLE

3.1 Unregulated Supply Input (V_{IN})

Connect the unregulated input supply to the V_{IN} pin. If there is a large distance between the input supply and the LDO regulator, some input capacitance is necessary for proper operation. A 1 μF capacitor, connected from V_{IN} to ground, is recommended for most applications.

3.2 Ground Terminal (GND)

Connect the unregulated input supply ground return to GND. Also connect one side of the 1 μ F typical input decoupling capacitor close to this pin and one side of the output capacitor C_{OUT} to this pin.

3.3 Shutdown Control Input (SHDN)

The regulator is fully enabled when a logic-high is applied to SHDN. The regulator enters shutdown when a logic-low is applied to this input. During shutdown, the output voltage falls to zero and the supply current is reduced to $0.5 \ \mu A$ (maximum).

3.4 Out-of-Regulation Flag (ERROR)

The open-drain ERROR flag provides indication that the regulator output voltage is not in regulation. The ERROR pin will be low when the output is typically below 5% of its specified value.

3.5 Regulated Voltage Output (V_{OUT})

Connect the output load to V_{OUT} of the LDO. Also connect one side of the LDO output decoupling capacitor as close as possible to the V_{OUT} pin.

4.0 DETAILED DESCRIPTION

The TC2054, TC2055 and TC2186 are precision fixed output voltage regulators. (If an adjustable version is desired, refer to the TC1070/TC1071/TC1187 data sheet (DS21353). Unlike bipolar regulators, the TC2054, TC2055 and TC2186 supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation over the entire 0 mA to maximum output current operating load range.

Figure 4-1 shows a typical application circuit. The regulator is enabled any time the shutdown input (SHDN) is at or above V_{IH}, and shutdown (disabled) when SHDN is at or below V_{IL}. SHDN may be controlled by a CMOS logic gate, or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, supply current decreases to 0.05 μ A (typical), V_{OUT} falls to zero volts, and ERROR is open-circuited.

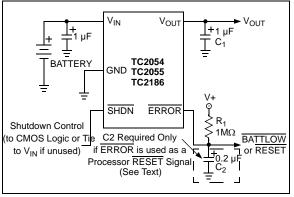


FIGURE 4-1:

Typical Application Circuit.

4.1 ERROR Open-Drain Output

ERROR is driven low whenever V_{OUT} falls out of regulation by more than -5% (typical). This condition may be caused by low input voltage, output current limiting or thermal limiting. The ERROR threshold is 5% below rated V_{OUT} regardless of the programmed output voltage value (e.g. ERROR = V_{OL} at 4.75V (typical) for a 5.0V regulator and 2.85V (typical) for a 3.0V regulator). ERROR output operation is shown in Figure 4-2.

Note that $\overline{\text{ERROR}}$ is active when V_{OUT} falls to V_{TH}, and inactive when V_{OUT} rises above V_{TH} by V_{HYS}.

As shown in Figure 4-1, ERROR can be used as a battery low flag or as a processor RESET signal (with the addition of timing capacitor C₂). R₁ x C₂ should be chosen to maintain ERROR below V_{IH} of the processor RESET input for at least 200 ms to allow time for the system to stabilize. Pull-up resistor R₁ can be tied to V_{OUT}, V_{IN} or any other voltage less than (V_{IN} + 0.3V). The ERROR pin sink current is self-limiting to approximately 18 mA.

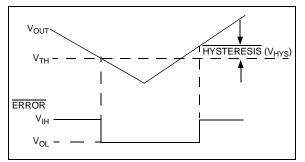


FIGURE 4-2: Error Output Operation.

4.2 Output Capacitor

A 1 μF (minimum) capacitor from V_{OUT} to ground is required. The output capacitor should have an effective series resistance of 0.01 Ω . to 5 Ω for V_{OUT} = 2.5V, and 0.05 Ω . to 5 Ω for V_{OUT} < 2.5V. Ceramic, tantalum and aluminum electrolytic capacitors can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C). When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

4.3 Input Capacitor

A 1 μF capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and this AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitors can be used (since many electrolytic aluminum capacitors freeze at approximately -30°C, solid tantalum are recommended for applications operating below -25°C). When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

^{© 2009} Microchip Technology Inc.

5.0 THERMAL CONSIDERATIONS

5.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when the die temperature exceeds approximately 160°C. The regulator remains off until the die temperature cools to approximatley 150°C.

5.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current.

Equation 5-1 is used to calculate worst case power dissipation:

EQUATION 5-1:

$$\begin{split} P_D &\approx (V_{INMAX} - V_{OUTMIN}) I_{LOADMAX} \end{split}$$

 Where:

$$\begin{split} P_D &= & \text{Worst-case actual power dissipation} \\ V_{\text{INMAX}} &= & \text{Maximum voltage on } V_{\text{IN}} \\ V_{\text{OUTMIN}} &= & \text{Minimum regulator output voltage} \\ I_{\text{LOADMAX}} &= & \text{Maximum output (load) current} \end{split}$$

The maximum allowable power dissipation (Equation 5-2) is a function of the maximum ambient temperature ($T_{A_{MAX}}$), the maximum allowable die temperature (125 °C) and the thermal resistance from junction-to-air (θ_{JA}). The 5-Pin SOT-23A package has a θ_{JA} of approximately 220°C/Watt when mounted on a typical two layer FR4 dielectric copper clad PC board.

EQUATION 5-2:

$$P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}}$$

Where all terms are previously defined.

Equation 5-1 can be used in conjunction with Equation 5-2 to ensure regulator thermal operation is within limits. For example:

Given:

 $\begin{array}{ll} V_{INMAX} &= 3.0V + 10\% \\ V_{OUTMIN} &= 2.7V - 2.5\% \\ I_{LOADMAX} &= 40 \mbox{ mA} \\ T_{AMAX} &= +55^{\circ}\mbox{C} \end{array}$

Find:

1. Actual power dissipation

2. Maximum allowable dissipation

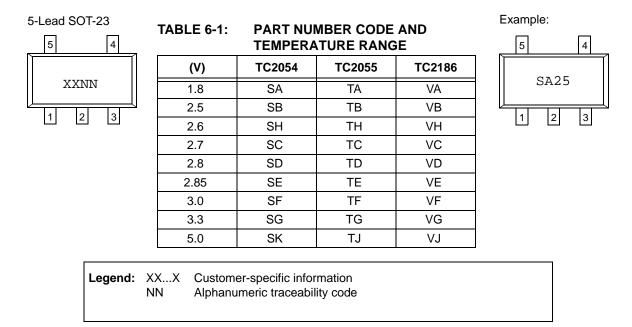
Actual power dissipation:

$$P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}$$

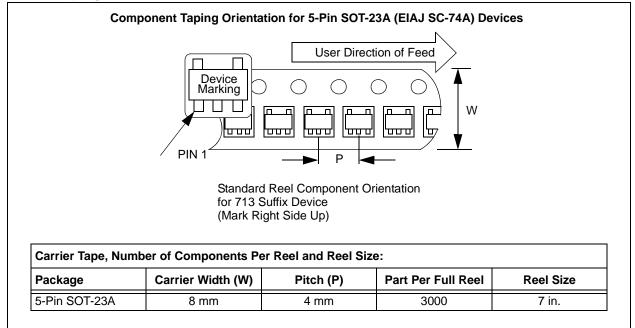
= [(3.0 × 1.1) - (2.7 × 0.975)]40 × 10⁻³
= 26.7mW

Maximum allowable power dissipation:

 $P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}}$ $= \frac{125 - 55}{220}$ = 318 mW

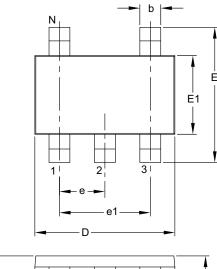

In this example, the TC2054 dissipates a maximum of only 26.7 mW; far below the allowable limit of 318 mW. In a similar manner, Equation 5-1 and Equation 5-2 can be used to calculate maximum current and/or input voltage limits.

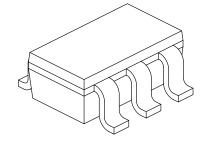
5.3 Layout Considerations

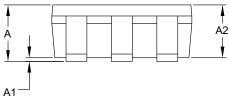

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower θ_{JA} and, therefore, increase the maximum allowable power dissipation limit.

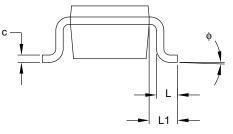
6.0 PACKAGING INFORMATION

6.1 Package Marking Information


6.2 Taping Information




^{© 2009} Microchip Technology Inc.


5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3	
Dime	ension Limits	MIN	NOM	MAX	
Number of Pins	N		5		
Lead Pitch	е		0.95 BSC		
Outside Lead Pitch	e1		1.90 BSC		
Overall Height	А	0.90	-	1.45	
Molded Package Thickness	A2	0.89	-	1.30	
Standoff	A1	0.00	-	0.15	
Overall Width	E	2.20	-	3.20	
Molded Package Width	E1	1.30	-	1.80	
Overall Length	D	2.70	-	3.10	
Foot Length	L	0.10	-	0.60	
Footprint	L1	0.35	-	0.80	
Foot Angle	φ	0°	-	30°	
Lead Thickness	С	0.08	-	0.26	
Lead Width	b	0.20	_	0.51	

Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

APPENDIX A: REVISION HISTORY

Revision D (September 2009)

The following is the list of modifications:

- 1. Added the 2.6V, and 5.0V option in Table 6-1 in Section 6.0 "Packaging Information".
- 2. Updated the package outline drawing.
- 3. Added 2.6V option to **Product Identification System** section.

Revision C (May 2006)

The following is the list of modifications:

- 1. Added overtemperature to bullet for overcurrent protection in Features and General Description verbiage.
- Added "Thermal Shutdown Die Temperature" to the Electrical Specifications table. Changed condition for "Minimum V_{IN} Operating Voltage".
- 3. Added Temperature Characteristics Table.
- 4. Added Section 5.1 "Thermal Shutdown".
- 5. Updated the package outline drawing.

Revision B (May 2002)

• Data Sheet converted to Microchip standards.

Revision A (May 2001)

• Original Release of this Document under Telcom.

^{© 2009} Microchip Technology Inc.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NOX</u>	<u>x x xxxx</u>	Examples:
Device Out Volt		a) TC2054-1.8VCTTR: 5LD SOT-23-A, 1.8V, Tape and Reel.
Voit	aye Kanye	b) TC2054-2.85VCTTR: 5LD SOT-23-A, 2.85V, Tape and Reel.
Device:	TC2054: 50 mA LDO with Shutdown and ERROR Output TC2055: 100 mA LDO with Shutdown and ERROR Output TC2186: 150 mA LDO with Shutdown and ERROR Output	c) TC2054-3.3VCTTR: 5LD SOT-23-A, 3.3V, Tape and Reel.
Output Voltage:	XX = 1.8V	a) TC2055-1.8VCTTR: 5LD SOT-23-A, 1.8V, Tape and Reel.
Oulput Voltage.	$\begin{array}{l} xx = 2.5V \\ xx = 2.6V \end{array}$	b) TC2055-2.85VCTTR: 5LD SOT-23-A, 2.85V, Tape and Reel.
	XX = 2.7V $XX = 2.8V$ $XX = 2.85V$ $XX = 2.85V$	c) TC2055-3.0VCTTR: 5LD SOT-23-A, 3.0V, Tape and Reel.
	$\begin{array}{rcl} XX &=& 3.0V\\ XX &=& 3.3V\\ XX &=& 5.0V \end{array}$	a) TC2186-1.8VCTTR: 5LD SOT-23-A, 1.8V, Tape and Reel.
Temperature Range:	V = -40°C to +125°C	b) TC2186-2.8VCTTR: 5LD SOT-23-A, 2.8V, Tape and Reel.
Package:	CTTR = Plastic Small Outline Transistor (SOT-23), 5-lead, Tape and Reel	

^{© 2009} Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

© 2009 Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820