512MB (2 x 64M x 32) / 1GB (4 x 64M x 32) NOR Flash MCP 3V Page Mode Memory

W7264M32V1-XSBX / W7464M32V1-XSBX

FEATURES

- Single power supply operation
 - 3 Volt read, erase, and program operations
- I/O Control
 - Wide I/O voltage range (Vio): 1.8V to Vcc
 - All input levels (address, control, and DQ input levels) and outputs are determined by voltage on V_{IO} input.
- Separate 1024-byte One Time Program (OTP) array with two lockable regions
- Uniform sector architecture
 - · One thousand twenty four 128 Kbyte sectors
- 100,000 erase cycles per sector typical
- 20-year data retention typical
- Commercial, industrial and military temperature ranges
- Organized as 2 ranks of 64M x 32 (512MB), 4 ranks of 64M x 32 (1GB)

PERFORMANCE CHARACTERISTICS

- High Performance
 - 110, 120 ns
 - · 32-byte page read buffer
 - · 15, 20 ns page read times
 - 512-byte write buffer reduces overall programming time for multiple-word updates
- Package option
 - 107 BGA, 14mm x 17mm
 - 1.0mm pitch
- Footprint compatible with W764M32V1-XBX
- Software features
 - Suspend and resume commands for program and erase operations
 - · Data# polling and toggle bits provide status
 - CFI (Common Flash Interface) parameter table
- Hardware features
 - Advanced Sector Protection (ASP)
 - · Hardware reset input (RESET#) resets device
 - Status Register, data polling, and ready/busy pin methods to determine device status.

GENERAL DESCRIPTION

The W7264M32V1-XSBX device is a 3V single power flash memory and utilizes four chips organized as 67,108,864 words. The W7464M32V1-XSBX device is a 3V single power flash memory and utilizes eight chips organized as 67,108,864 words. These devices have a 32-bit wide data bus. One write enable per 16-bit data word. Each device requires a single 3 volt power supply for both read and write functions.

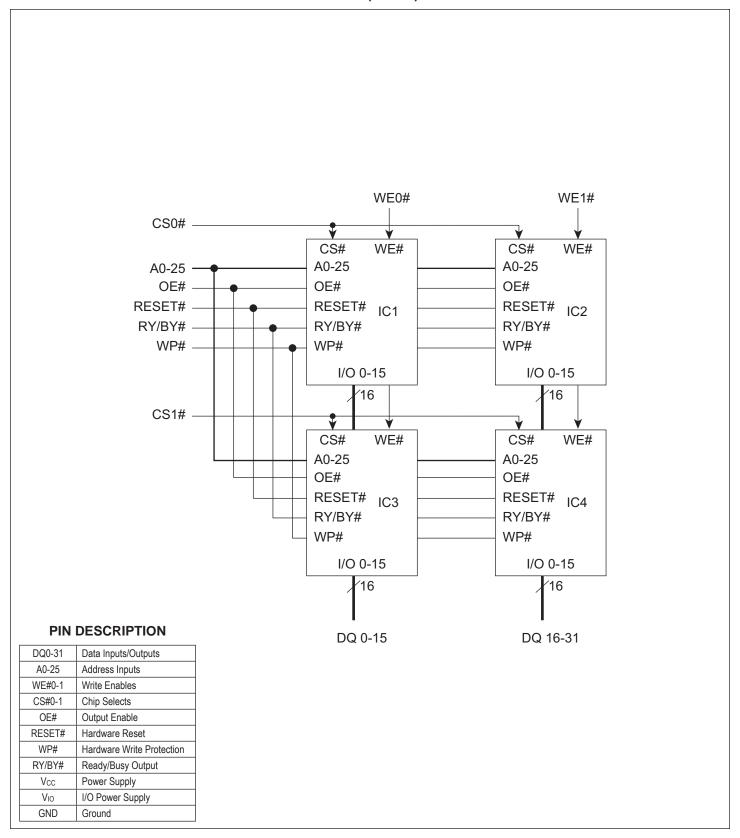

^{*} This product is subject to change without notice.

FIGURE 1 – PIN CONFIGURATION (TOP VIEW)

A	1	2	3		_	_	7	0	0
Α				4	5	6	7	8	9
		Vcc	DQ24	DQ8	GND	(A1)	(A4)	Vcc	GND
В	VIO	DQ10	DQ25	DQ9	GND	(A2)	(A5)	(A7)	VIO
С	DQ12	DQ27	(DQ11)	DQ26	GND	OE#	(A6)	RY/BY#)	(A8)
D	DQ13	(DQ29)	(DQ28)	CS2#*	GND	(A3)	(RESET#)	WP#	(A15)
Е	DQ14	DQ30	DQ31	VIO	GND	VIO	CS0#	WE1#	(A16)
F	(DQ15)	GND	VIO	Vcc	GND	Vcc	VIO	GND	(A23)
G	(DQ0)	GND	VIO	Vcc	GND	Vcc	VIO	GND	(A24)
Н	DQ1	DQ17	DQ16)	VIO	GND	VIO	CS1#	WE0#	(A18)
J	(DQ18)	DQ2	DQ3	CS3#*	GND	(A20)	(A21)	(A22)	(A19)
K	(DQ19)	DQ4	DQ20	(DQ21)	GND	(A0)	(A11)	(A10)	(A9)
L	VIO	DQ5	DQ6	DQ23	GND	(A17)	(A13)	(A12)	VIO
М	GND	Vcc	(DQ22)	(DQ7)	GND	(A25)	(A14)	Vcc	GND
	1	2	3		5	6			

*Balls D4 (CS2#) and J4 (CS3#) are not connected in W7264M32V1 devices

FIGURE 2 - W7264M32V1 (512MB) BLOCK DIAGRAM

WE0# WE1# CS0# -CS# WE# CS# WE# A0-25 A0-25 A0-25 OE# OE# OE# RESET# RESET# RESET# IC1 IC2 RY/BY# RY/BY# RY/BY# WP# WP# WP# I/O 0-15 I/O 0-15 **′16** 16 CS1# CS# WE# CS# WE# A0-25 A0-25 OE# OE# RESET# RESET# IC3 IC4 RY/BY# RY/BY# WP# WP# I/O 0-15 I/O 0-15 **′16** 16 CS2# CS# WE# CS# WE# A0-25 A0-25 OE# OE# RESET# RESET# IC5 IC6 RY/BY# RY/BY# WP# WP# I/O 0-15 I/O 0-15 ′16 ′16 CS3# CS# WE# CS# WE# A0-25 A0-25 **PIN DESCRIPTION** OE# OE# DQ0-31 Data Inputs/Outputs RESET# RESET# IC7 IC8 A0-25 Address Inputs RY/BY# RY/BY# WE#0-1 Write Enables WP# WP# CS#0-3 Chip Selects OE# Output Enable I/O 0-15 I/O 0-15 RESET# Hardware Reset 16 **′16** WP# Hardware Write Protection RY/BY# Ready/Busy Output Vcc Power Supply DQ 0-15 DQ 16-31 Vio I/O Power Supply **GND** Ground

FIGURE 3 - W7464M32V1 (1GB) BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter		Unit
Supply Voltage Range (Vcc)	-0.5 to +4.0	V
Signal Voltage Range (other than RESET#)	-0.5 to V _{IO} +0.5	V
I/O Voltage Range (Vio)	-0.5 to +4.0	V
RESET#	-0.5 to Vcc +0.5	V
Storage Temperature Range	-55 to +125	°C

NOTES:

- 1. Minimum DC voltage on input or i/Os is -0.5V. During voltage transitions, input or I/Os pins may overshoot GND to -2.0V for periods of up to 20ns. Maximum DC voltage on input or I/Os pins is Vcc + 0.5V. During voltage transitions, input or I/O pins may overshoot to Vcc + 2.0V for periods up to 20ns
- 2. Stresses above those listed under Absolute Maxium Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of the data sheet is not implied. Exposure of the device to absolute maxium rating conditions for extended peroids may affect device reliability

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3.0	3.6	V
I/O Voltage	V _{IO}	1.7	V _{CC} + 0.2	V

AC TEST CONDITIONS

Parameter	Тур	Unit
Input Pulse Levels	$V_{IL} = 0$, $V_{IH} = V_{IO}$	V
Input Rise and Fall	1.5	ns
Input and Output Reference Level	V _{IO} x 0.5	V
Output Timing Reference Level	V _{IO} x 0.5	V

NOTES:

IoL & IoH programmable from 0 to 16mA.

Tester Impedance $Z0 = 50\Omega$.

 V_Z is typically the midpoint of V_{OH} and $V_{\text{OL}}.$

 I_{OL} & I_{OH} are adjusted to simulate a typical resistive load circuit.

ATE tester includes jig capacitance.

W7264M32V1 (512MB) BGA THERMAL RESISTANCE

Description	Symbol	Typical	Units	Notes
Junction to Board	Theta JB	16.3	°C/W	1
Junction to Case (Top)	Theta JC	11.9	°C/W	1

The JEDEC JESD51 specifications are used as the default modeling environment and boundary conditions. Using still air, horizontal mounting and the 2s2p board. Published material properties are used as input to derive the thermal characteristics of the module. Your application conditions will most likely differ from the JESD51 2s2p board definition specifications; therefore, Microsemi PMG recommends a customized evaluation of thermal resistances based on the actual conditions in thermally-challenged situations. Delphi models are available for most products upon request.

W7464M32V1 (1GB) BGA THERMAL RESISTANCE

Description	Symbol	Typical	Units	Notes
Junction to Board	Theta JB	20.4	°C/W	1
Junction to Case (Top)	Theta JC	14.9	°C/W	1

The JEDEC JESD51 specifications are used as the default modeling environment and boundary conditions. Using still air, horizontal mounting and the 2s2p board. Published material properties are used as input to derive the thermal characteristics of the module. Your application conditions will most likely differ from the JESD51 2s2p board definition specifications; therefore, Microsemi PMG recommends a customized evaluation of thermal resistances based on the actual conditions in thermally-challenged situations. Delphi models are available for most products upon request.

W7264M32V1-XSBX / W7464M32V1-XSBX

DC CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Max	Unit
Input Load Current (512MB)	ILI	V _{IN} = V _{SS} to V _{CC} , V _{CC} = V _{CC(MAX)}		±4.0	μA
Output Leakage Current (512MB)	ILO	Vout = Vss to Vcc, Vcc = Vcc(MAX)		±2.0	μA
Input Load Current (1GB)	ILI	V _{IN} = V _{SS} to V _{CC} , V _{CC} = V _{CC(MAX)}		±8.0	μA
Output Leakage Current (1GB)	ILO	Vout = Vss to Vcc, Vcc = Vcc(MAX)		±4.0	μΑ
V _{CC} Active Current for Read (6)	Icc1	CS# = V _{IL} , OE# = V _{IH} , V _{CC} = V _{CC(MAX)} ; address switching at 5MHz		120	mA
V _{CC} Intra-Page Read Current (6)	Icc2	CS# = V _{IL} #, OE# = V _{IH} , V _{CC} = V _{CC(MAX)} ; f = 33MHz		50	mA
V _{CC} Active Erase/Program Current (1, 6)	Іссз	CS# = V _{IL} #, OE# = V _{IH} , V _{CC} = V _{CC(MAX)}		200	mA
Vcc Standby Current (512MB) (7)	Icc4	CS#, RESET#, OE# = Vih, Vih = Vio, Vil = Vss, Vcc = Vcc MAX		800	μΑ
Vcc Standby Current (1GB) (7)	Icc4	CS#, RESET#, OE# = Vih, Vih = Vio, Vil = Vss, Vcc = Vcc MAX		1.6	mA
Vcc Reset Current (3, 5, 6)	Icc5	CS# = Vih, RESET# = Vil, Vcc = Vcc MAX		40	mA
Automotic Close Mode (E12MP) (2 E 7)	lasa	V _{IH} = V _{IO} , V _{IL} = V _{SS} , V _{CC} = V _{CC MAX} , t _{ACC} + 30 ns		12	mA
Automatic Sleep Mode (512MB) (2, 5, 7)	Icc6	V _{IH} = V _{IO} , V _{IL} = V _{SS} , V _{CC} = V _{CC MAX} , tassb		800	μΑ
Automotic Close Mode (1CD) (2 F 7)	lasa	V _{IH} = V _{IO} , V _{IL} = V _{SS} , V _{CC} = V _{CC MAX} , t _{ACC} + 30 ns		24	mA
Automatic Sleep Mode (1GB) (2, 5, 7)	Icc6	V _{IH} = V _{IO} , V _{IL} = V _{SS} , V _{CC} = V _{CC MAX} , tassb		1.6	mA
V _{CC} current during power up (5, 6)	Icc7	RESET# = Vio, CS# = Vio, Vcc = Vcc MAX		160	mA
Input Low Voltage	VIL		-0.5	0.3 x V _{IO}	V
Input High Voltage	ViH		0.7 x V _{IO}	V _{IO} + 0.4	V
Output Low Voltage (4)	V _{OL}	I_{OL} = 100 μ A for DQs, I_{OL} = 2mA for RY/BY#		0.15 x V _{IO}	V
Output High Voltage	Voh	I _{OH} = 100 μA	0.85 x V _{IO}		V
Low V _{CC} Lock-Out Voltage (5)	V _{LKO}		2.25	2.5	V

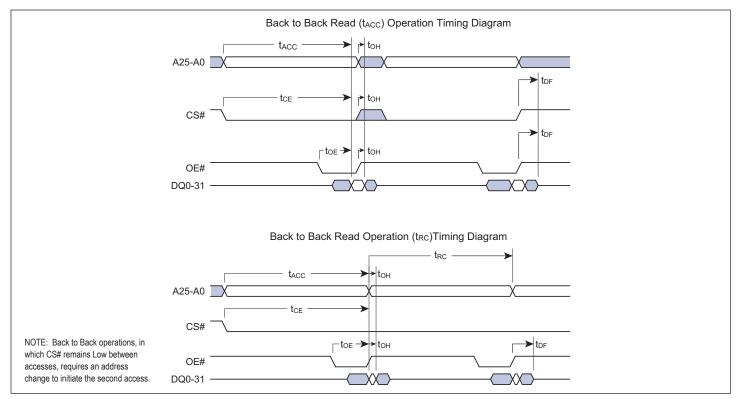
NOTES:

- 1. Icc active while Embedded Algorithm is in progress.
- 2. Automatic sleep mode enables the lower power mode when addresses remain stable for the specified designated time.
- 3. If an embedded operation is in progress at the start of reset, the current consumption will remain at the embedded operation specification until the embedded operation is stopped by the reset. If no embedded operation is in progress when reset is started, or following the stopping of an embedded operation, Icc7 will be drawn during the remainder of tRPH. After the end of tRPH the device will go to standby mode until the next read or write.
- 4. The recommended pull-up resistor for RY/BY# output is 5k to 10k Ohms.
- 5. Guaranteed by design, not tested
- 6. Current value is for 1-rank of 32-bit data flash only.
- 7. Max value when all chips of the device are in this low power mode

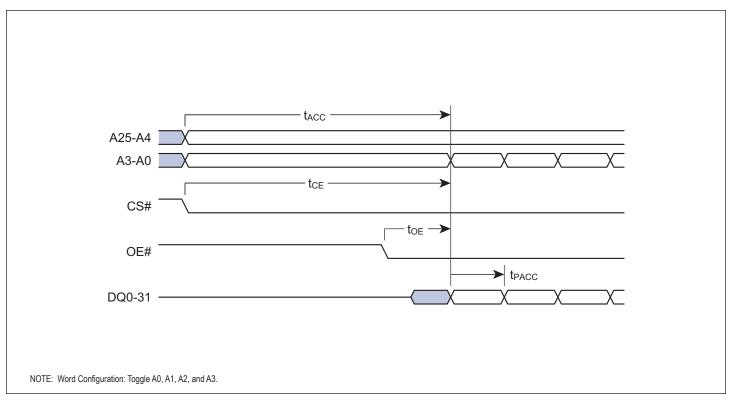
AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS - WE# CONTROLLED

Parameter	Syr	nbol	Min	110 Max	Min -1	20 Max	Unit
Write Cycle Time	t _{AVAV}	twc	60		60		ns
Chip Select Setup Time	t _{ELWL}	tcs	0		0		ns
Write Enable Pulse Width	twLWH	twp	25		25		ns
Address Setup Time	tavwl	tas	0		0		ns
Data Setup Time	tоvwн	tos	30		30		ns
Data Hold Time	twhox	tон	0		0		ns
Address Hold Time	twlax	tah	45		45		ns
Write Enable Pulse Width High (3)	twnwL	twpн	20		20		ns
Single Word Programming Time (1)	twnwh1			400		400	μs
Buffer Programming Time				750		750	μs
Sector Erase (2)	twhwh2			1.1		1.1	sec
Read Recovery Time before Write (3)	tghwl		0		0		ns
Address Setup Time to OE# low during toggle bit polling		taso	15		15		ns
Write Recovery Time from RY/BY# (3)		t _{RB}	0		0		ns
Program/Erase Valid to RY/BY# (3)		tBUSY		80		80	ns

NOTES:


- 1. Typical value for twhwh1 is 125 μ s.
- 2. Typical value for twhwh2 is 0.275 sec.
- 3. Guaranteed by design, not tested.

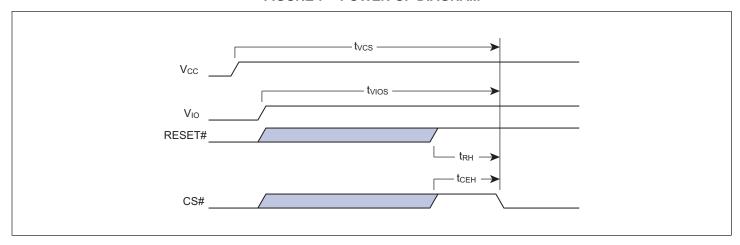
AC CHARACTERISTICS – READ-ONLY OPERATIONS


Parameter		Symbol		-1 Min	10 Max	-1 Min	20 Max	Unit
Read Cycle Time		t _{AVAV}	t _{RC}	110		120		ns
Address Access Time		tavqv	tacc		110		120	ns
Chip Select Access Time		t _{ELQV}	tce		110		120	ns
Page Access Time			tPACC		15		20	ns
Output Enable to Output Valid		tglqv	toe		25		25	ns
Chip Select High to Output High Z		tehqz	tor		15		15	ns
Output Enable High to Output High Z		tghqz	tor		15		15	ns
Output Hold from Addresses, CS# or OE# Change, Whichever occurs first		taxqx	tон	0		0		ns
Output Enable Hold Time (1)	Read			0		0		ns
Output Enable Hold Time (1)	Toggle and Data# Polling		t _{OEH}	10		10		ns

^{1.} Guaranteed by design, not tested.

FIGURE 5 – AC WAVEFORMS FOR READ OPERATIONS

FIGURE 6 - PAGE READ TIMING


POWER ON AND RESET PARAMETERS

Parameter	Description	Limit	Value	Unit
tvcs	Vcc Setup Time to first access (1, 2)	Min	300	μs
tvios	V _{IO} Setup Time to first access (1, 2)	Min	300	μs
trpн	RESET# Low to CS# Low (1, 2)	Min	35	μs
t _{RP}	RESET# Pulse Width	Min	200	ns
t _{RH}	Time between RESET# (High) and CS# (low) (1)	Min	50	ns
tсен	CS# Pulse Width High (1)	Min	20	ns

NOTES:

- 1. Not tested.
- 2. Timing measured from V_{CC} reaching V_{CC} minimum and V_{IO} reaching V_{IO} minimum to V_{IH} on Reset and V_{IL} on CS#.
- 3. RESET# Low is optional during POR. If RESET is asserted during POR, the later of treh, trios, or tycs will determine when CS# may go Low. If RESET# remains Low after trios, or tycs is satisfied, treh is measured from the end of trios, or tycs. RESET must also be High treh before CS# goes Low.
- 4. $V_{CC} \ge V_{IO}$ 200 mV during power-up.
- 5. Vcc and Vio ramp rate can be non-linear.
- 6. Sum of t_{RP} and t_{RH} must be equal to or greater than t_{RPH} .

FIGURE 7 - POWER-UP DIAGRAM

FIGURE 8 - HARDWARE RESET

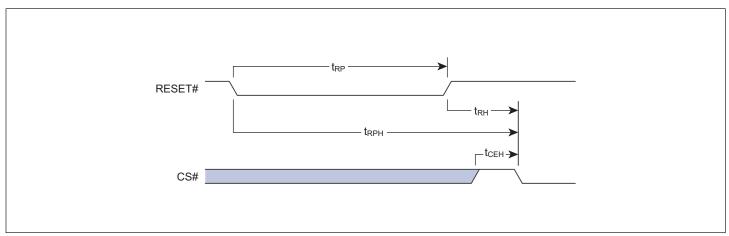


FIGURE 9 - BACK TO BACK WRITE OPERATION TIMING DIAGRAM

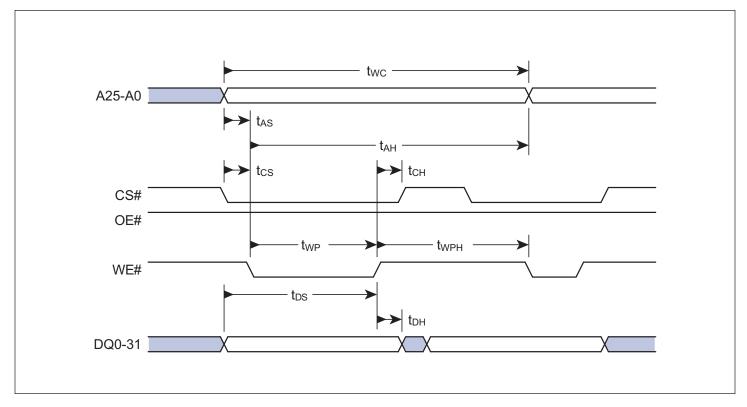


FIGURE 10 - BACK TO BACK (CS#VIL) WRITE OPERATION TIMING DIAGRAM

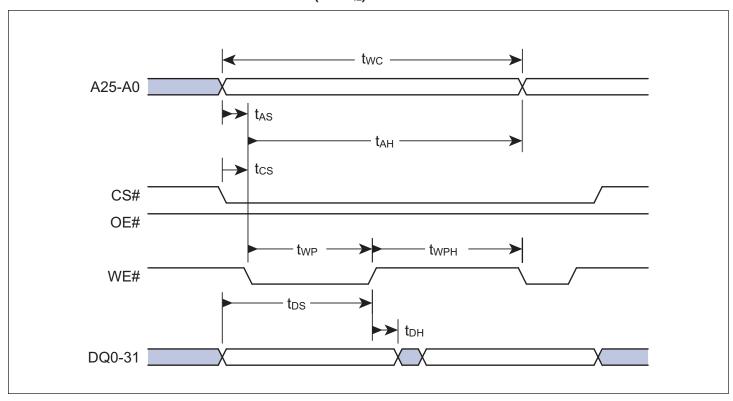


FIGURE 11 – WRITE TO READ (t_{ACC}) OPERATION TIMING DIAGRAM

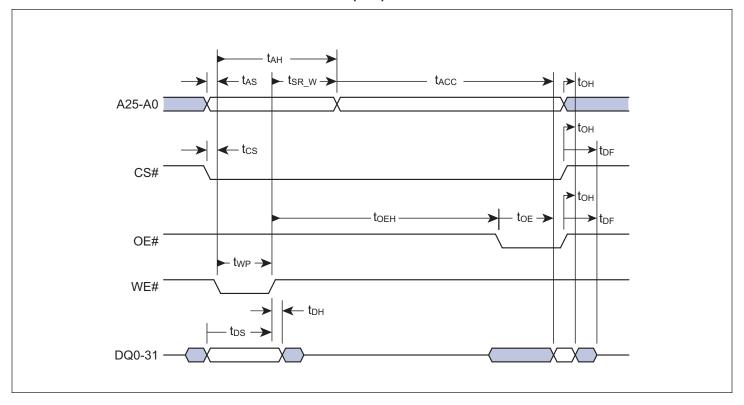


FIGURE 12 - WRITE TO READ (tce) OPERATION TIMING DIAGRAM

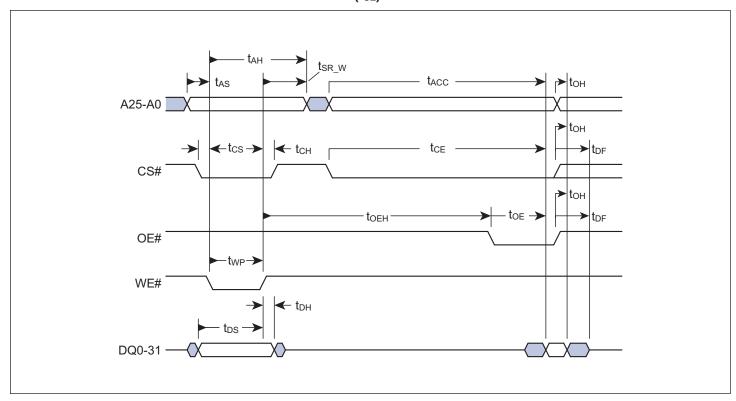


FIGURE 13 - READ TO WRITE (CS# VIL) OPERATION TIMING DIAGRAM

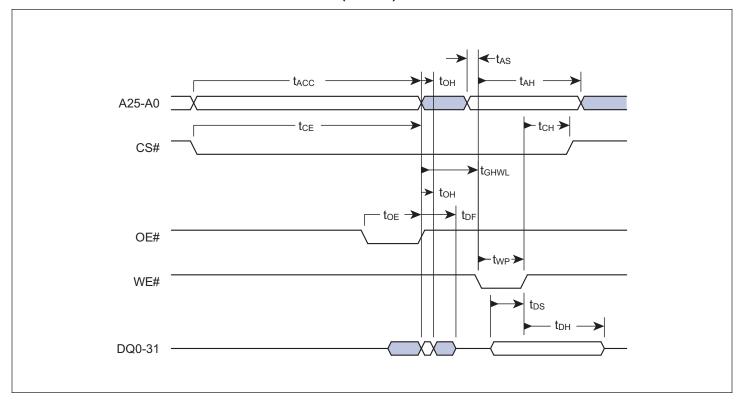
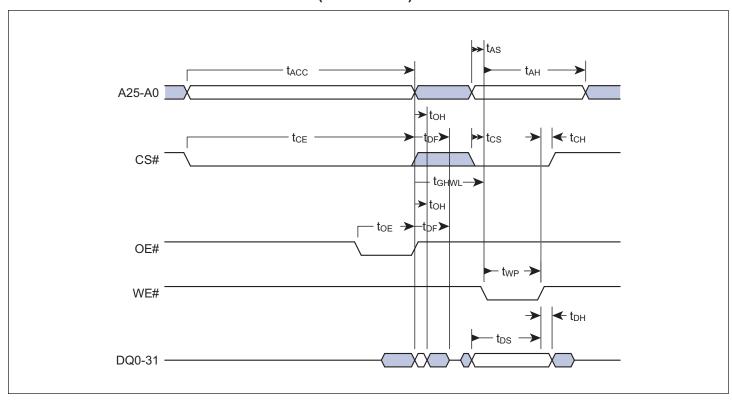
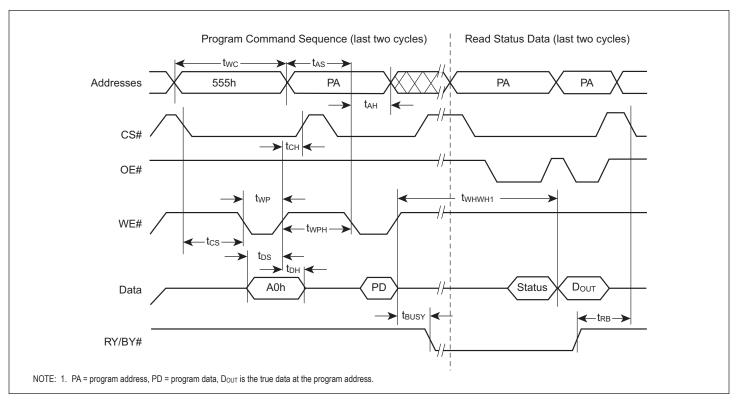




FIGURE 14 - READ TO WRITE (CS# TOGGLE) OPERATION TIMING DIAGRAM

FIGURE 15 – PROGRAM OPERATIONS

FIGURE 16 - CHIP/SECTOR ERASE OPERATION TIMINGS

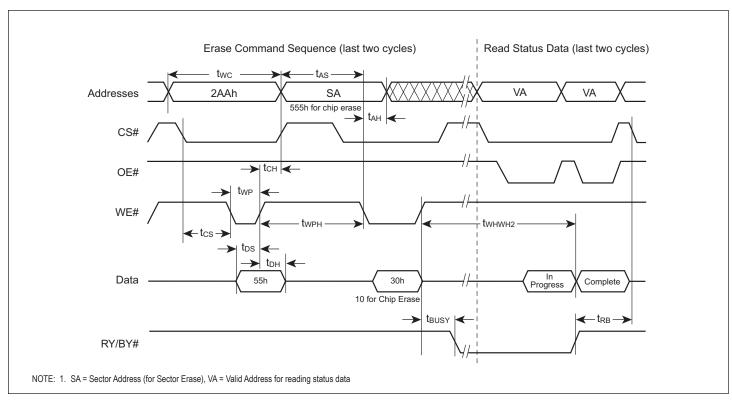


FIGURE 17 – DATA POLLING TIMINGS (DURING EMBEDDED ALGORITHMS)

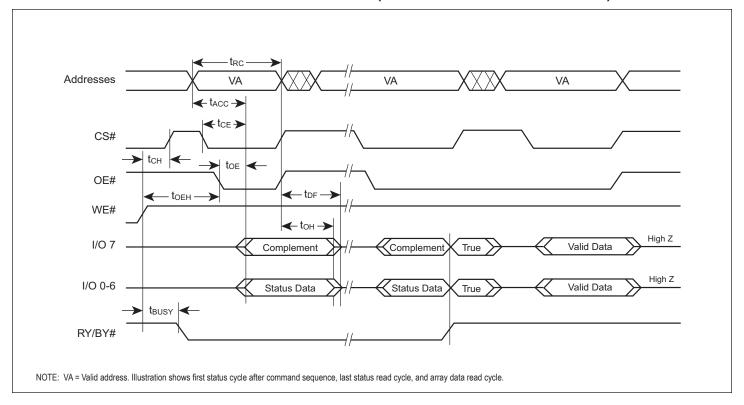
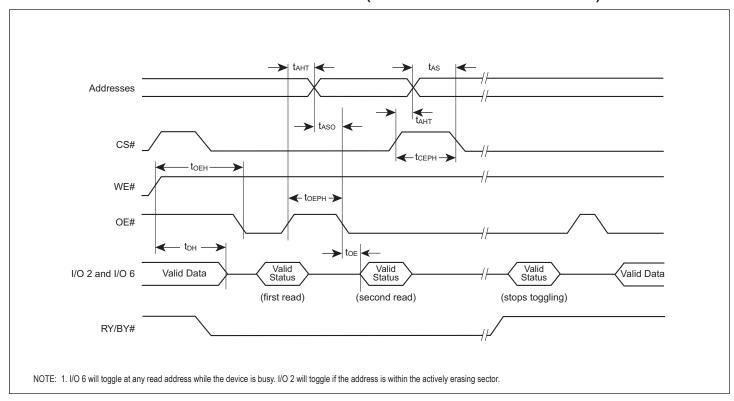
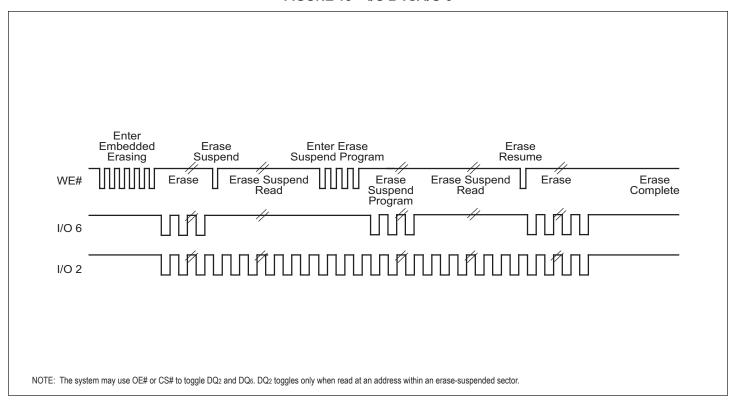




FIGURE 18 - TOGGLE BIT TIMINGS (DURING EMBEDDED ALGORITHMS)

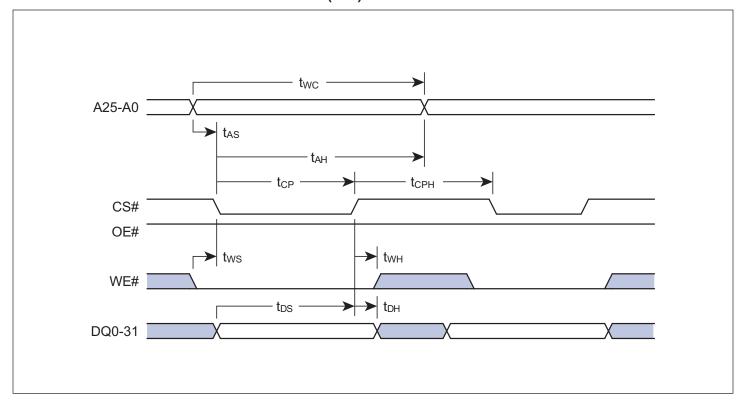
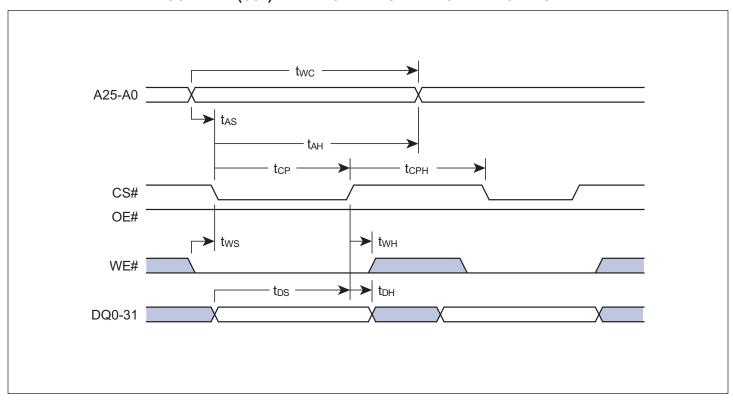
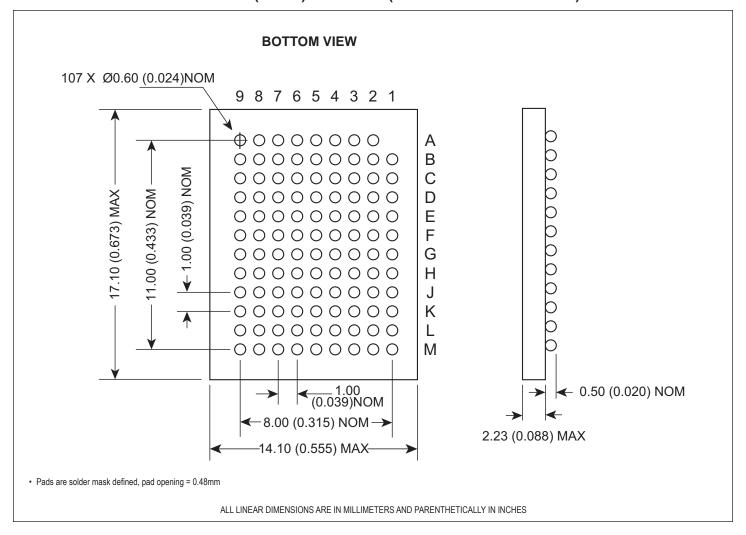
FIGURE 19 - I/O 2 Vs. I/O 6

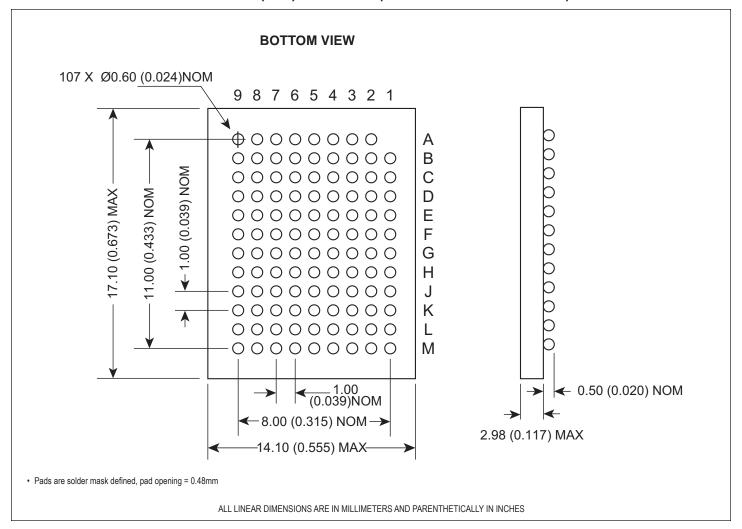
AC CHARACTERISTICS – ALTERNATE CS# CONTROLLED ERASE AND PROGRAM OPERATIONS

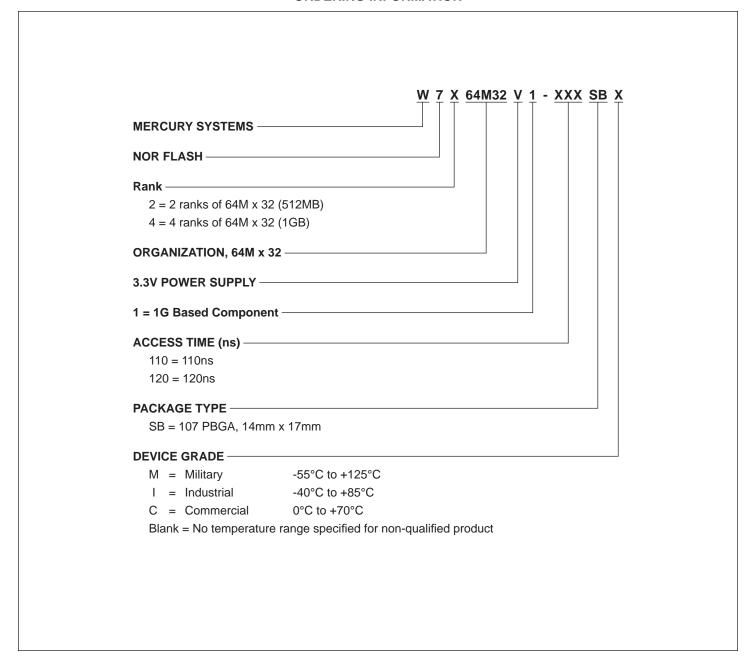
Parameter				Speed	Options	
JEDEC	Std	Description		110	120	Unit
tavav	twc	Write Cycle Time	Min	60	60	ns
tavwl	tas	Address Setup Time	Min	0	0	ns
telax	tан	Address Hold Time	Min	45	45	ns
	taht	Address Hold Time From CS# or OE# High during toggle bit polling	Min	0	0	ns
t _{DVEH}	t _{DS}	Data Setup Time	Min	30	30	ns
t _{EHDX}	t _{DH}	Data Hold Time	Min	0	0	ns
	t _{CEPH}	CS# High during toggle bit polling (1)	Min	20	20	ns
	toeph	OE# High during toggle bit polling (1)	Min	20	20	ns
tghel	tghel	Read Recovery Time Before Write (OE# High to WE# Low) (1)	Min	0	0	ns
twlel	Tws	WE# Setup Time	Min	0	0	ns
tehwh	twн	WE# Hold Time	Min	0	0	ns
teleh	tcp	CS# Pulse Width	Min	25	25	ns
tehel	tсрн	CS# Pulse Width High	Min	20	20	ns
twhwh1	twhwh1	Buffer Programming Time	Тур	180	180	μs
t _{WHWH2}	t _{WHWH2}	Sector Erase Operation	Тур	0.3	0.3	sec

NOTE: 1. Not tested.

FIGURE 20 – BACK TO BACK (CS#) WRITE OPERATION TIMING DIAGRAM


FIGURE 21 – (CS#) WRITE TO READ OPERATION TIMING DIAGRAM


W7264M32V1 (512MB) - 107 PBGA (PLASTIC BALL GRID ARRAY)

W7464M32V1 (1GB) - 107 PBGA (PLASTIC BALL GRID ARRAY)

ORDERING INFORMATION

Document Title

512MB (2 x 64M x 32) / 1GB (4 x 64M x 32) NOR Flash Multi-Chip Package 3V Page Mode Memory

Revision History

Rev#	History	Release Date	Status
Rev 0	Initial Release	December 2012	Advanced
Rev 1	Changes (Pgs. 1, 5, 6, 7, 9, 15, 19)	December 2013	Preliminary
	1.1 Add V _{IO} for 1.8V operations		
	1.2 Misc. updates and timings		
	1.3 Change data sheet status to Preliminary		
Rev 2	Changes (Pgs. 1, 5, 6, 7, 9, 15, 19)	November 2014	Final
	2.1 Remove marking code		
	2.2 Update DC characteristics table for Icc4 and Icc6		
	2.3 Remove marking code from footprint		
	2.4 Remove ES from Access Time list in Ordering Information		
	2.5 Change data sheet status to Final		
Rev 3	Change (Pg 1)	June 2015	Final
	3.1 Correct data sheet status note on page 1		
Rev 4	Change (Pg 5) (ECN #9628)	October 2015	Final
	4.1 Update JB and JC		
Rev 5	Changes (Pg. All) (ECN 10156)	August 2016	Final
	5.1 Change document layout from Microsemi to Mercury Systems		
Rev 6	Changes (Pg. All) (ECN 10957)	July 2018	Final
	6.1 Update data sheet with new Mercury logo		

