

JANS 2N5152U3 and JANS 2N5154U3

RADIATION HARDENED NPN POWER SILICON TRANSISTOR Qualified per MIL-PRF-19500/544

DESCRIPTION

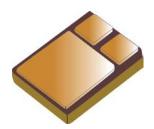
These RHA level 2N5152U3 and 2N5154U3 silicon transistor devices are military Radiation Hardness Assurance qualified up to a JANSF level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5152 and 2N5154.
- JANS RHA qualifications are available per MIL-PRF-19500/544.

APPLICATIONS / BENEFITS


- High frequency operation.
- Lightweight.
- High-speed power-switching applications.
- High-reliability applications.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Ambient	R _{ØJA}	175	°C/W
Thermal Resistance Junction-to-Case	R _{ejc}	10	°C/W
Reverse Pulse Energy ⁽¹⁾		15	mJ
Collector Current (dc)	Ι _C	2	А
Collector to base voltage (static), emitter open	V _{CBO}	100	V
Collector to emitter voltage (static) base open	V _{CEO}	80	V
Emitter to base voltage (static) collector open	V _{EBO}	5.5	V
Steady-State Power Dissipation @ T _A = +25 °C	PD	1	W
Steady-State Power Dissipation @ T _C = +25 °C	PD	10	W

<u>Notes:</u> 1. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load energy test circuit.

<u>Qualified Levels</u>: JANSM, JANSD, JANSP, JANSL, JANSR, JANSF

U3 (SMD-0.5) Package

Also available in:

DO-5 Package (long-leaded) JANS_2N5152L & JANS_2N5152L

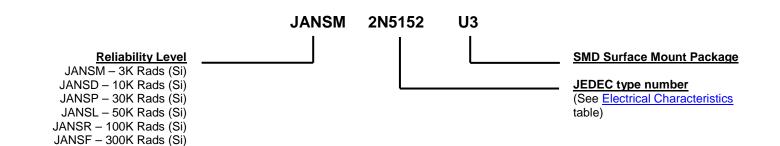
TO-39 Package (leaded) JANS_2N5152 & JANS_2N5154

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298


Website: www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, A = anode.
- POLARITY: See <u>schematic</u> on last page.
- WEIGHT: 0.9 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS			
Symbol	Definition			
C _{obo}	Common-base open-circuit output capacitance.			
I _{CEO}	Collector cutoff current, base open.			
I _{CEX}	Collector cutoff current, circuit between base and emitter.			
I _{EBO}	Emitter cutoff current, collector open.			
h _{FE}	Common-emitter static forward current transfer ratio.			
V _{CEO}	Collector-emitter voltage, base open.			
V _{CBO}	Collector-emitter voltage, emitter open.			
V _{EBO}	Emitter-base voltage, collector open.			

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted.

OFF CHARACTERISTICS

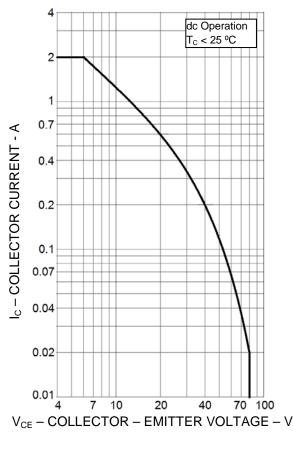
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage $I_{C} = 100 \text{ mA}, I_{B} = 0$	V _{(BR)CEO}	80		v
Emitter-Base Cutoff Current $V_{EB} = 4.0 \text{ V}, I_C = 0$ $V_{EB} = 5.5 \text{ V}, I_C = 0$	I _{EBO}		1.0 1.0	μA mA
Collector-Emitter Cutoff Current $V_{CE} = 60 \text{ V}, V_{BE} = 0$ $V_{CE} = 100 \text{ V}, V_{BE} = 0$	I _{CES}		1.0 1.0	μA mA
Collector-Emitter Cutoff Current $V_{CE} = 40 \text{ V}, I_B = 0$	I _{CEO}		50	μA

ON CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio					
$I_{C} = 50 \text{ mA}, V_{CE} = 5 \text{ V}$	2N5152U3		20		
	2N5154U3		50		
I _C = 2.5 A, V _{CE} = 5 V	2N5152U3	h _{FE}	30	90	
	2N5154U3		70	200	
$I_{C} = 5A, V_{CE} = 5V$	2N5152U3		20		
	2N5154U3		40		
Collector-Emitter Saturation Voltage				0.75	
I _C = 2.5 A, I _B = 250 mA		V _{CE(sat)}		1.5	V
I _C = 5.0 A, I _B = 500 mA				1.5	
Base-Emitter Voltage Non-Saturation		V _{BE}		1.45	V
$I_{C} = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$		V BE		1.45	v
Base-Emitter Saturation Voltage				1.45	
I _C = 2.5 A, I _B = 250 mA		V _{BE(sat)}		2.2	V
I _C = 5.0 A, I _B = 500 mA		. ,		2.2	

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-					
Circuit Forward Current Transfer Ratio	2N5152U3 2N5154U3	h _{fe}	6 7		
$I_{C} = 500 \text{ mA}, V_{CE} = 5 \text{ V}, f = 10 \text{ MHz}$			1		
Small-signal short Circuit Forward-Current					
Transfer Ratio	2N5152U3	h _{fe}	20		
$I_{C} = 100 \text{ mA}, V_{CE} = 5 \text{ V}, f = 1 \text{ KHz}$	2N5154U3		50		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		C _{obo}		250	pF


ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $I_{C} = 5 \text{ A}, I_{B1} = 500 \text{ mA}$	t _{on}		0.5	μs
Turn-Off Time $R_L = 6\Omega$	t _{off}		1.5	μs
Storage Time I _{B2} = -500 mA	t _S		1.4	μs
Fall Time V _{BE(OFF)} = 3.7 V	t _f		0.5	μs

SAFE OPERATING AREA (See SOA graph below and <u>MIL-STD-750, method 3053</u>)

 $\begin{array}{l} \textbf{DC Tests} \\ T_{C} = +25 \ ^{\circ}\text{C}, \ t_{P} = 1.0 \ \text{s}, \ 1 \ \text{Cycle} \\ \textbf{Test 1} \\ V_{CE} = 5.0 \ \text{V}, \ I_{C} = 2.0 \ \text{A} \\ \textbf{Test 2} \\ V_{CE} = 32 \ \text{V}, \ I_{C} = 310 \ \text{mA} \\ \textbf{Test 3} \\ V_{CE} = 80 \ \text{V}, \ I_{C} = 12.5 \ \text{mA} \end{array}$

Maximum Safe Operating Area

ELECTRICAL CHARACTERISTICS @ $T_A = +25 \text{ °C}$, unless otherwise noted (continued)

POST RADIATION ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector to Emitter Cutoff Current		I _{CEO}		100	μA
V _{CE} = 40 V		ICEO			۳. ۲
Emitter to Base Cutoff Current		I _{EBO}		2.0	μA
$V_{EB} = 4 V$		IEBO		2.0	μπ
Breakdown Voltage, Collector to Emitter		V _{(BR)CEO}	80		V
I _C = 100 mA		V (BR)CEO	00		v
Collector to Emitter Cutoff Current				2.0	
$V_{CE} = 60 V$		I _{CES}		2.0	μA
Emitter to Base Cutoff Current				2.0	mA
V _{EB} = 5.5 V		I _{EBO}		2.0	ША
Forward-Current Transfer Ratio ⁽¹⁾					
$I_{C} = 50 \text{ mA}, V_{CE} = 5 \text{ V}$	2N5152U3		[10]		
	2N5154U3	[h _{FE}]	[25]		
$I_{C} = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$	2N5152U3		[15]	90	
	2N5154U3		[35]	200	
I_{C} = 5 A pulsed, V_{CE} = 5 V	2N5152U3		[10]		
	2N5154U3		[20]		
Base to Emitter voltage (non-saturated) $V_{CE} = 5 V$, $I_C = 2.5 A$, pulsed		V _{BE}		1.45	V
Collector-Emitter Saturation Voltage $I_{C} = 2.5 \text{ mA}, I_{B} = 250 \text{ mA}, \text{ pulsed}$ $I_{C} = 500 \text{ mA}, I_{B} = 500 \text{ mA}, \text{ pulsed}$		V _{CE(sat)}		0.86 1.73	V
Base-Emitter Saturation Voltage $I_{C} = 2.5 \text{ A}, I_{B} = 250 \text{ mA}, \text{ pulsed}$ $I_{C} = 5 \text{ A}, I_{B} = 500 \text{ mA}, \text{ pulsed}$		V _{BE(sat)}		1.67 2.53	V

(1) See method 1019 of MIL-STD-750 for how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the preand post-radiation h_{FE} . Notice the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

GRAPHS

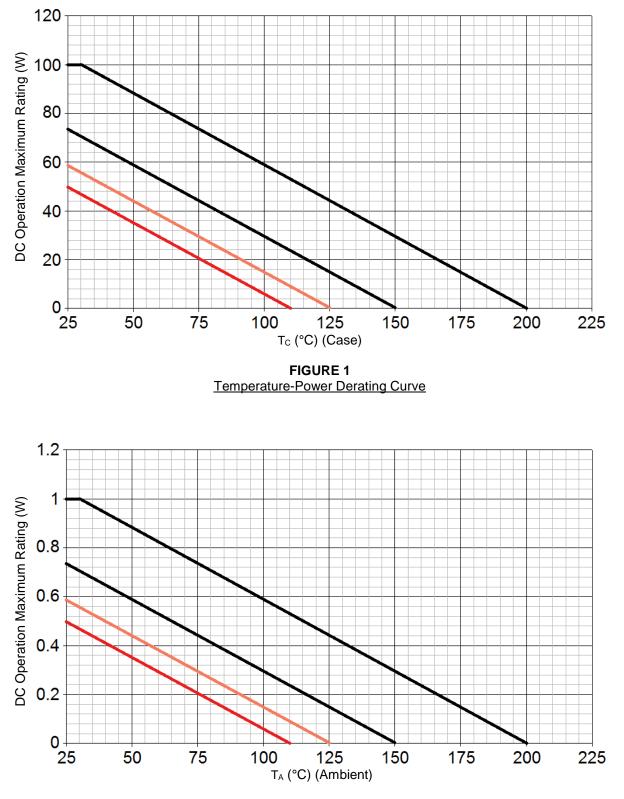


FIGURE 2 <u>Temperature-Power Derating Curve</u>

T4-LDS-0100-2, Rev. 1 (120716)

JANS 2N5152U3 and JANS 2N5154U3

GRAPHS (continued)

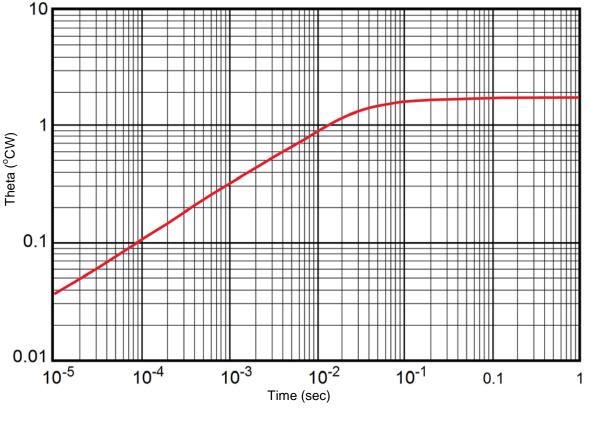
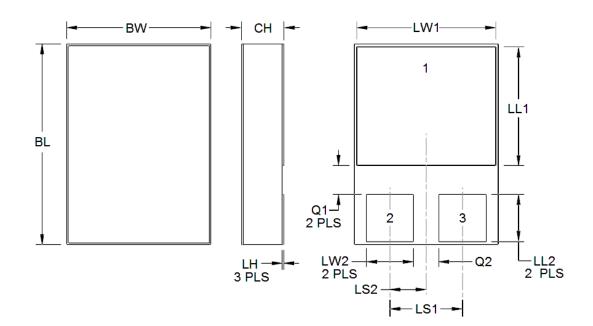



FIGURE 3 Maximum Thermal Impedance (R_{eJC})

JANS 2N5152U3 and JANS 2N5154U3

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Schematic

Symbol	DIMENSIONS				
Symbol	INCH		MILLIM	ETERS	
	Min	Max	Min	Max	
BL	.395	.405	10.03	10.29	
BW	.291	.301	7.39	7.65	
СН	.112	.124	2.84	3.15	
LH	.010	.020	0.25	0.51	
LL1	.220	.230	5.59	5.84	
LL2	.115	.125	2.92	3.18	
LS1	.150 BSC		3.81 BSC		
LS2	.075	.075 BSC 1.91 BSC			
LW1	.281	.291	7.14	7.39	
LW2	.090	.100	2.29 2.54		
Q1	.030		0.76		
Q2	.030	0.76			
Term 1	Cathode				
Term 2	Anode (See Schematic)				
Term 3	Anode (See Schematic)				