

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microepripherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0956-4

Object of Declaration: PIC18F66K80 100-Pin Plug-In Module

EU Declaration of Conformity

Manufacturer: Microchip Technology Inc.

2355 W. Chandler Blvd.

Chandler, Arizona, 85224-6199

USA

This declaration of conformity is issued by the manufacturer.

The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission's Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

This development/evaluation tool, when incorporating wireless and radio-telecom functionality, is in compliance with the essential requirement and other relevant provisions of the R&TTE Directive 1999/5/EC and the FCC rules as stated in the declaration of conformity provided in the module datasheet and the module product page available at www.microchip.com.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip's standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson

VP Development Tools

12-Sep-14
Date

NOTES:

Table of Contents

Preface	7
Chapter 1. Introduction and Review	
1.1 Introduction	11
1.2 Highlights	12
1.3 PIC18F66k80 Plug-In Module Kit Contents	12
1.4 Overview of the PIC18F66k80 Family CAN Capabilities	12
Chapter 2. Important Notes	
2.1 Highlights	13
2.2 Using the PIM with the Automotive Networking Development Board	13
2.3 Programming the Microcontroller	13
Chapter 3. Hardware Configuration/Jumper Settings	
3.1 Highlights	15
3.2 Hardware Features	
3.3 Crystal	
3.4 Jumpers	
Chapter 4. Demo Code/Reference Firmware	
4.1 Preprogrammed Demonstration Firmware	17
Appendix A. PIC18F66K80 100-Pin Plug-In Module Schematics	
A.1 Schematics	19
Worldwide Sales and Service	

OTES:			

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our website (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the PIC18F66K80 100-Pin Plug-In Module. Items discussed in this chapter include:

- Document Layout
- · Conventions Used in this Guide
- Recommended Reading
- The Microchip Website
- Development Systems Customer Change Notification Service
- Customer Support
- · Revision History

DOCUMENT LAYOUT

This document describes how to use the PIC18F66K80 100-Pin Plug-In Module as a development tool to emulate and debug firmware on a target board, as well as how to program devices. The document is organized as follows:

- Chapter 1. "Introduction and Review"
- Chapter 2. "Important Notes"
- Chapter 3. "Hardware Configuration/Jumper Settings"
- Chapter 4. "Demo Code/Reference Firmware"
- Appendix A. "PIC18F66K80 100-Pin Plug-In Module Schematics"

PIC18F66K80 100-Pin Plug-In Module

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples		
Arial font:				
Italic characters	Referenced books	MPLAB [®] IDE User's Guide		
	Emphasized text	is the <i>only</i> compiler		
Initial caps	A window	the Output window		
	A dialog	the Settings dialog		
	A menu selection	select Enable Programmer		
Quotes	A field name in a window or dialog	"Save project before build"		
Underlined, italic text with right angle bracket	A menu path	File>Save		
Bold characters	A dialog button	Click OK		
	A tab	Click the Power tab		
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1		
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>		
Courier New font:				
Plain Courier New	Sample source code	#define START		
	Filenames	autoexec.bat		
	File paths	c:\mcc18\h		
	Keywords	_asm, _endasm, static		
	Command-line options	-Opa+, -Opa-		
	Bit values	0, 1		
	Constants	0xFF, 'A'		
Italic Courier New	A variable argument	file.o, where file can be any valid filename		
Square brackets []	Optional arguments	mcc18 [options] file [options]		
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}		
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>		
	Represents code supplied by user	void main (void) { }		

RECOMMENDED READING

This user's guide describes how to use PIC18F66K80 100-Pin Plug-In Module. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

Release Notes for MPLAB® ICD 3 In-Circuit Debugger

For the latest information on using the PIC18F66K80 100-Pin Plug-In Module, read the "Readme for PIC18F66K80 100-Pin Plug-In Module.htm" file (an HTML file) in the Readmes subdirectory of the MPLAB IDE installation directory. The release notes (Readme) contains update information and known issues that may not be included in this user's guide.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

PIC18F66K80 100-Pin Plug-In Module

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

- Compilers The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB C compilers; all MPLAB assemblers (including MPASM™ assembler); all MPLAB linkers (including MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object librarian).
- **Emulators** The latest information on Microchip in-circuit emulators. This includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.
- In-Circuit Debuggers The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3 debug express.
- MPLAB® IDE The latest information on Microchip MPLAB IDE, the Windows® Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features.
- Programmers The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included are nonproduction development programmers such as PICSTART[®] Plus and PICkit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at:

http://www.microchip.com/support.

REVISION HISTORY

Revision A (September, 2016)

This is the initial release of this document.

Chapter 1. Introduction and Review

1.1 INTRODUCTION

The PIC18F66K80 Plug-In Module (PIM) allows the users to easily experiment with the PIC18F66K80 family of microcontrollers in conjunction with the Automotive Networking Development Board (ADM00716). The PIC18F66K80 family of devices fully supports applications requiring cost-effective, low-power CAN solutions with high performance and robust peripheral set. The PIM has an integrated ECAN™ module that conforms to the CAN 2.0B Active specification.

TABLE 1-1: 64-PIN TO 100-PIN PIM MAPPING

Device Pin	PIC18F66K80 64-Pin TQFP	PIM Pin	Device Pin	PIC18F66K80 64-Pin TQFP	PIM Pin
1	RC7/CCP4	80	33	VDDCORE/VCAP	85
2	RD4/ECCP1/P1A/PSP4	60	34	RA5/AN4/HLVDIN/T1CKI/SS	84
3	RD5/P1B/PSP5	61	35	RF2/MDCIN1	76
4	RD6/P1C/PSP6	91	36	RF3	77
5	RD7/P1D/PSP7	92	37	RE0/AN5/RD	94
6	RG0/RX1/DT1	52	38	RE1/AN6/C1OUT/WR	99
7	RG1/CANTX2	12	39	RE2/AN7/C2OUT/CS	100
8	Vss	75	40	AVDD	30
9	AVDD	30	41	VDD	37
10	VDD	2	42	AVss	31
11	RG2/T3CKI	14	43	Vss	36
12	RG3/TX1/CK1	51	44	RF4/MDCIN2	81
13	RBO/AN10/FLT0/INT0	21	45	RF5	82
	(Jumper J3)	66	46	OSC1/CLKIN/RA7	63
14	RB1/AN8/CTDIN/INT1	19	47	OSC2/CLKOUT/RA6	64
	(Jumper J4)	67	48	RC0/SOSCO/SCLKI	74
15	RB2/CANTX/CTED1/INT2	88	49	RC1/SOSCI	73
16	RB3/CANRX/CTED2/INT3	87	50	RC2/T1G/CCP2	4
17	RF0/MDMIN	47	51	RC3/REFO/SCL/SCK	55
18	RG4/T0CKI	35		(Jumper J2)	57
19	RF1	48	52	RF6/MDOUT	5
20	RB4/AN9/CTPLS/KBI0	83	53	RF7	18
21	RB5/T0KI/T3CKI/CCPS/K BI1	72	54	RD0/C1INA/PSPO	17
22	RB6/PGC/KBI2	26	55	RD1/C1INB/PSP1	38
23	RB7/PGD/T3G/KBI3	27	56	Vss	45
24	RE5/CANTX	89	57	VDD	46
25	VDD	16	58	RD2/C2INA/PSP2	58
26	Vss	15	59	RD3/C2INB/CTMUI/PSP3	59
27	RE4/CANRX	90	60	RE6/RX2/DT2	49

TABLE 1-1: 64-PIN TO 100-PIN PIM MAPPING (CONTINUED)

Device Pin	PIC18F66K80 64-Pin TQFP	PIM Pin	Device Pin	PIC18F66K80 64-Pin TQFP	PIM Pin
28	MCLR/RE3	13	61	RE7/TX2/CK2	50
29	RA0/CVREF/AN0/ULPWU	20	62	RC4/SDA/SDI	54
30	RA1/AN1/C1INC	93		(Jumper J1)	56
31	RA2/VREF-/AN2/C2INC	28	63	RC5/SDO	53
32	RA3/VREF+/AN3	29	64	RC6/CCP3	3

1.2 HIGHLIGHTS

Items discussed in this chapter include:

- PIC18F66K80 Plug-In Module Kit Contents
- Overview of the PIC18F66K80 Family CAN Capabilities

1.3 PIC18F66K80 PLUG-IN MODULE KIT CONTENTS

The PIM module kit contains the following items:

• PIC18F66K80 100-pin Plug-In Module

1.4 OVERVIEW OF THE PIC18F66K80 FAMILY CAN CAPABILITIES

- Conforms to CAN 2.0B Active Specification
- Three Operating modes:
 - Legacy mode (full backward compatibility with existing PIC18CXX8/FXX8 CAN modules)
 - Enhanced mode (programmable TX/RX buffers)
 - FIFO mode (programmable TX/RX buffers)
- Message Bit Rates up to 1 Mbps
- DeviceNet[™] Data Byte Filter Support
- Six Programmable Receive/Transmit Buffers
- Three Dedicated Transmit Buffers with Prioritization
- Two Dedicated Receive Buffers
- Sixteen Full, 29-Bit Acceptance Filters with Dynamic Association
- Three Full, 29-Bit Acceptance Masks

Chapter 2. Important Notes

2.1 HIGHLIGHTS

This chapter discusses:

- Using the PIM with the Automotive Networking Board
- · Programming the Microcontroller

2.2 USING THE PIM WITH THE AUTOMOTIVE NETWORKING DEVELOPMENT BOARD

The PIC18F66K80 100-pin PIM brings out SPI and I^2C on the same PIM pins. Use the jumpers J1 and J2 on the PIM to select between the two.

To enable INT access to all four click connections on the Automotive Networking Development Board, the PIC18F66K80 PIM allows the user to jumper the PIC18F INT0 or INT1 into the various INT pins on the four click headers by using jumpers J3 and J4 on the PIM.

Refer to **Section 3.4 "Jumpers"** for more details.

2.3 PROGRAMMING THE MICROCONTROLLER

When the PIM is mated to the Automotive Networking Development Board, it may be reprogrammed directly through the modular RJ11 jack (JP1) or the PICkit[™] connection (J11) on the Automotive Networking Development Board.

OTES:				

Chapter 3. Hardware Configuration/Jumper Settings

3.1 HIGHLIGHTS

This chapter discusses:

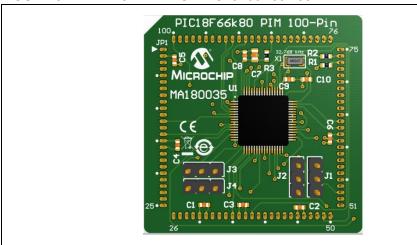
- Hardware Features
- Crystal
- Jumpers

3.2 HARDWARE FEATURES

The PIC18F66K80 PIM has a number of hardware features intended to make it useful as an initial development platform and demonstration board. Refer to **Appendix A. "PIC18F66K80 100-Pin Plug-In Module Schematics"** for the Schematics of the PIM. The board offers the following hardware features:

- 32.768 kHz surface-mounted crystal
- · Jumpers for added configurability

3.3 CRYSTAL

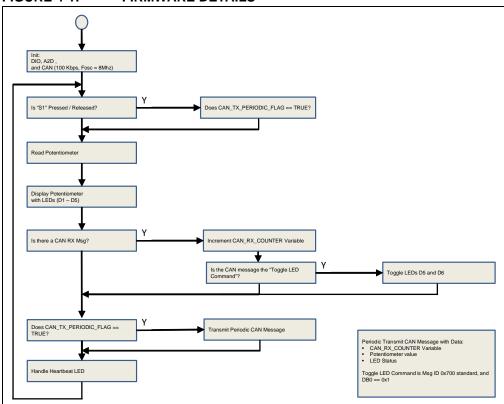

The PIM is populated with a 32.768 kHz crystal oscillator on the secondary oscillator pins.

3.4 JUMPERS

The PIM has four jumper headers on it to provide additional flexibility for experimentation and development purposes. The default position for these jumpers are:

- J1 Jumper
 - Pins 1 and 2 (connects port 54 to RC4): SPI SDI connection to PIM (default setting)
 - Pins 2 and 3 (connects port 56 to RC4): I²C SDA connection to PIM
- J2 Jumper
 - Pins 1 and 2 (connects port 55 to RC3): SPI connection click headers (default setting)
 - Pins 2 and 3 (connects port 57 to RC3): I²C connection click headers
- J3 Jumper
 - Pins 1 and 2 (connects port 21 to RB0/INT0): click 1 INT connection (default setting)
 - Pins 2 and 3 (connects port 66 to RB0/INT0): click 3 INT connection
- J4 Jumper
 - Pins 1 and 2 (connects port 19 to RB1/INT1): click 2 INT connection (default setting)
 - Pins 2 and 3 (connects port 67 to RB1/INT1): click 4 INT connection

FIGURE 3-1: 3D VIEW OF PIC18F66K80 100-PIN PIM

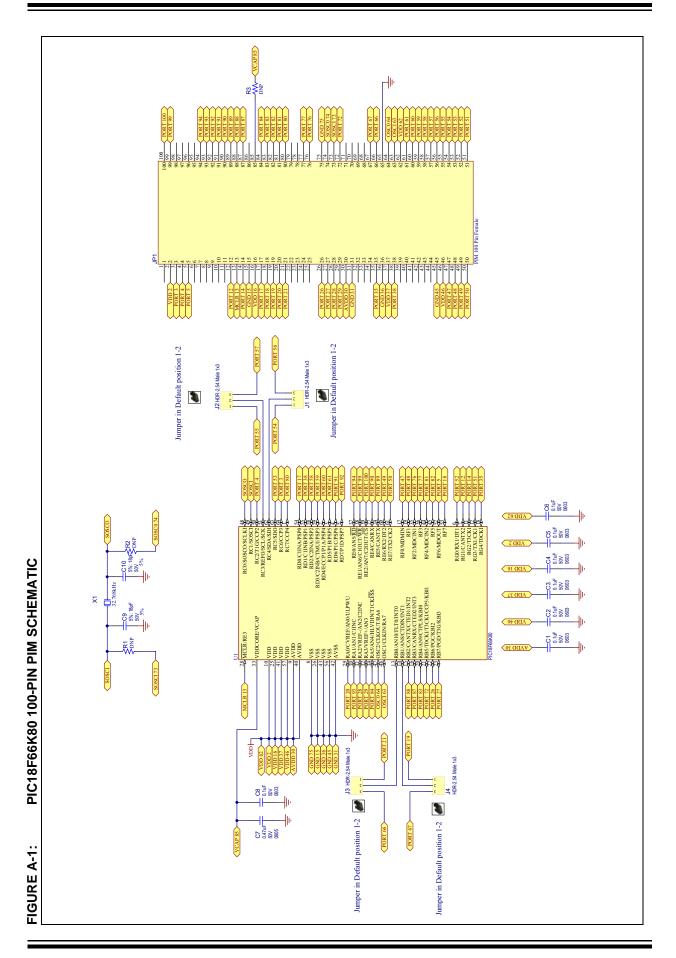


Chapter 4. Demo Code/Reference Firmware

4.1 PREPROGRAMMED DEMONSTRATION FIRMWARE

The PIC18F66K80 100-pin PIM is programmed with firmware demonstrating basic features on the Automotive Networking Development Board. The source for the PIC18F66K80 PIM demo code may be downloaded from the Microchip website www.microchip.com.

FIGURE 4-1: FIRMWARE DETAILS


OTES:			

Appendix A. PIC18F66K80 100-Pin Plug-In Module Schematics

A.1 SCHEMATICS

The PIC18F66K80 100-Pin Plug-In Module schematics are shown in Figure A-1. By default, the PIM ships from the factory with the PIC18F66K80 pre-installed in location U1. The board revision number can be found etched into the copper on the bottom side of the PCB.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support
Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-7889 China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou

Tel: 86-20-8755-8029 China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7355

China - Shanghai Tel: 86-21-5407-5533

Fax: 86-21-5407-5066
China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859 Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16