
SINGLE SUPPLY QUAD PECL-TO-TTL W/LATCHED OUTPUT ENABLE

Precision Edge[®] SY10H841 SY100H841

FEATURES

- Translates positive ECL to TTL (PECL-to-TTL)
- 300ps pin-to-pin skew
- 500ps part-to-part skew
- Differential internal design for increased noise immunity and stable threshold inputs
- VBB reference output
- Single supply
- Enable input
- Latch enable input
- Extra TTL and ECL power/ground pins to reduce cross-talk/noise
- High drive capability: 24mA each output
- Fully compatible with industry standard 10K, 100K I/O levels
- Available in 16-pin SOIC package

BLOCK DIAGRAM

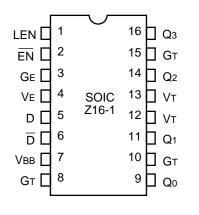
Precision Edge®

DESCRIPTION

The SY10/100H841 are single supply, low skew translating 1:4 clock drivers.

The devices feature a 24mA TTL output stage, with AC performance specified into a 50pF load capacitance.

A latch is provided on-chip. When LEN is LOW (or left open, in which case it is pulled low by the internal pull-downs) the latch is transparent. A HIGH on the enable pin (\overline{EN}) forces all outputs LOW.


As frequencies increase to 40MHz and above, precise timing and shaping of clock signals becomes extremely important. The H841 solves several clock distribution problems such as minimizing skew (300ps), maximizing clock fanout (24mA drive), and precise duty cycle control through a proprietary differential internal design.

The 10K version is compatible with 10KH ECL logic levels. The 100K version is compatible with 100K levels.

PIN NAME	5
Pin	Function
Gт	TTL Ground (0V)
Vт	TTL Vcc (+5.0V)
VE	ECL Vcc (+5.0V)
Ge	ECL Ground (0V)
D, D	Signal Input (PECL)
Vвв	VBB Reference Output (PECL)
Q0 - Q3	Signal Outputs (TTL)
ĒN	Enable Input (PECL)
LEN	Latch Enable Input

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

16-Pin SOIC (Z16-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10H841ZC	Z16-1	Commercial	SY10H841ZC	Sn-Pb
SY10H841ZCTR ⁽²⁾	Z16-1	Commercial	SY10H841ZC	Sn-Pb
SY100H841ZC	Z16-1	Commercial	SY100H841ZC	Sn-Pb
SY100H841ZCTR ⁽²⁾	Z16-1	Commercial	SY100H841ZC	Sn-Pb
SY10H841ZH ⁽³⁾	Z16-1	Commercial	SY10H841ZH with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY10H841ZHTR ^(2, 3)	Z16-1	Commercial	SY10H841ZH with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100H841ZH ⁽³⁾	Z16-1	Commercial	SY100H841ZH with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100H841ZHTR ^(2, 3)	Z16-1	Commercial	SY100H841ZH with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

TRUTH TABLE

D	LEN	EN	Q
L	L	L	L
н	L	L	Н
Х	Х	Н	L
Х	Н	L	Latch

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VE (ECL) VT (TTL)	Power Supply Voltage	-0.5 to +7.0 -0.5 to +7.0	V
VI (ECL) Vout (TTL)	Input Voltage	0.0 to VEE 0.0 to VT	V
TLEAD	Lead Temperature Range (soldering, 20sec)	+260	°C
Tstore	Storage Temperature	-65 to +150	°C
Та	Operating Temperature	0 to +85	°C

NOTE:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN DESCRIPTION

Pin	Symbol	Description
1	LEN	Latch Enable Input
2	EN	Enable Input (PECL)
3	Ge	ECL Ground (0V)
4	VE	ECL Vcc (+5.0V)
5	D	ECL Signal Input (Non-inverting)
6	D	ECL Signal Input (Inverting)
7	Vвв	VBB Reference Output (PECL)
8	Gт	TTL Ground (0V)
9	Q0	Signal Output (TTL)
10	Gт	TTL Ground (0V)
11	Q1	Signal Output (TTL)
12	Vт	TTL Vcc (+5.0V)
13	Vт	TTL Vcc (+5.0V)
14	Q2	Signal Output (TTL)
15	Gт	TTL Ground (0V)
16	Q3	Signal Output (TTL)

VCC AND CLOAD

Ranges to meet duty cycle requirement: $0^{\circ}C \le TA \le 85^{\circ}C$. Output duty cycle measured relative to 1.5V.

Symbol	Parameter		Min.	Тур.	Max.	Unit	Condition
Pw	Ranges of Vcc and CL to meet min. pulse width (HIGH or LOW) at fout \leq 40MHz	Vcc CL Pw	4.75 10 11	5.0 — —	5.25 50 —	V pF ns	All Outputs
Pw	Ranges of Vcc and C∟ to meet min. pulse width (HIGH or LOW) at fouт ≤ 50MHz	Vcc CL Pw	4.875 15 9.0	5.0 — —	5.125 27 —	V pF ns	All Outputs

DC CHARACTERISTICS

 $VT = VE = 5.0V \pm 5\%$

			TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
IEE	Power Supply Current	ECL	_	40	_	40	_	40	mA	VE Pin
Іссн	Power Supply Current	TTL	_	20	_	20	_	20	mA	Total all V⊤ pins
ICCL			_	25		25	_	25		

TTL DC ELECTRICAL CHARACTERISTICS

 $VT = VE = +5.0V \pm 5\%$

		TA =	: 0°C	TA =	+25°C	TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Vон	Output HIGH Voltage	2.5 2.0		2.5 2.0		2.5 2.0		V	IOH = -3.0mA IOH = -15mA
Vol	Output LOW Voltage	—	0.5	—	0.5	_	0.5	V	IoL = 24mA
los	Output Short Circuit Current	-80	-200	-80	-200	-80	-200	mA	Vout = 0V

10H ECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $VT = VE = +5.0V \pm 5\%$

		TA =	S°C ∶	TA = +	-25°C	TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Іін	Input HIGH Current	—	225		175		175	μΑ	-
lı∟	Input LOW Current	0.5	—	0.5	—	0.5	_	μΑ	—
Viн	Input HIGH Voltage	3.830	4.160	3.870	4.190	3.940	4.280	V	VE = 5.0V
VIL	Input LOW Voltage	3.050	3.520	3.050	3.520	3.050	3.555	V	VE = 5.0V
Vbb	Output Reference Voltage	3.620	3.730	3.650	3.750	3.690	3.810	V	VE = 5.0V

Note:

1. ECL VIH, VIL and VBB are referenced to VCCE and will vary 1:1 with the power supply. The levels shown are for IVT = IVO = VCCE = +5.0V.

100H ECL DC ELECTRICALCHARACTERISTICS⁽¹⁾

		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Ін	Input HIGH Current	—	225	_	175	—	175	μΑ	—
lı∟	Input LOW Current	0.5	_	0.5	_	0.5	_	μΑ	_
Viн	Input HIGH Voltage	3.835	4.120	3.835	4.120	3.835	4.120	V	VE = 5.0V
VIL	Input LOW Voltage	3.190	3.525	3.190	3.525	3.190	3.525	V	VE = 5.0V
Vвв	Output Reference Voltage	3.620	3.740	3.620	3.740	3.620	3.740	V	VE = 5.0V

Note:

1. ECL VIH, VIL and VBB are referenced to VccE and will vary 1:1 with the power supply. The levels shown are for IVT = IVO = VccE = +5.0V.

AC CHARACTERISTICS

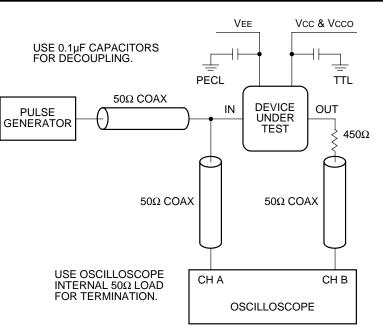
$V\text{T}=V\text{E}=5.0V\pm5\%$

			Ta =	0°C	TA = 4	-25°C	TA =	+85°C		
Symbol	Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
tplh tphl	Propagation Delay D to Output	Q0–Q3	2.7	3.7	2.7	3.7	2.7	3.7	ns	CL = 50pF
t skpp	Part-to-Part Skew ^(1,4)	Q0–Q3	_	0.5	—	0.5	_	0.5	ns	CL = 50pF
tskew++	Within-Device Skew ^(2,4)	Q0–Q3		0.3	_	0.3		0.3	ns	C∟ = 50pF
tskew––	Within-Device Skew ^(3,4)	Q0–Q3		0.3	_	0.3	_	0.3	ns	C∟ = 50pF
tplh tphl	Propagation Delay LEN to Q	Q0–Q3	2.7	3.7	2.7	3.7	2.7	3.7	ns	CL = 50pF
tplh tphl	Propagation Delay EN to Output	Q0–Q3	2.7	3.7	2.7	3.7	2.7	3.7	ns	C∟ = 50pF
tr tf	Output Rise/Fall Time 1.0V to 2.0V	Q0–Q3	—	1.5	_	1.5	_	1.5	ns	CL = 50pF
fmax	Max. Input Frequency ^(5,6)	Q0–Q3	160	_	160	—	160	_	MHz	C∟ = 50pF
_	Pulse Width	Q0–Q3	1.5	_	1.5	—	1.5	_	ns	—
_	Recovery Time EN	Q0–Q3	1.0	—	1.0	_	1.0	_	ns	_
ts	Set-up Time D, EN	Q0–Q3	0.75	_	0.75		0.75		ns	
tн	Hold Time D, EN	Q0–Q3	0.75	_	0.75		0.75	_	ns	

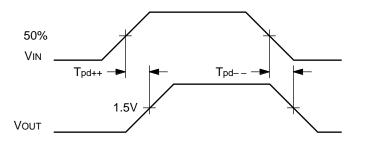
Notes:

1. Device-to-Device Skew considering HIGH-to-HIGH transitions at common Vcc level.

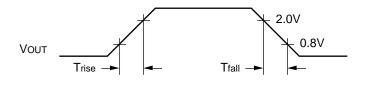
2. Within-Device Skew considering HIGH-to-HIGH transitions at common Vcc level.

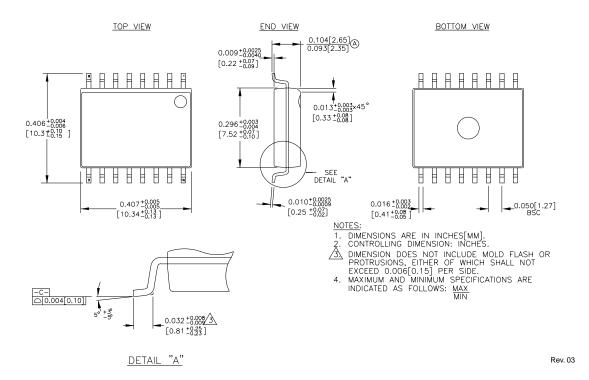

3. Within-Device Skew considering LOW-to-LOW transitions at common Vcc level.

4. All skew parameters are guaranteed but not tested.


5. Frequency at which output levels will meet at 0.8V to 2.0V minimum swing.

6. The fMAX value is specified as the minimum guaranteed maximum frequency. Actual operational maximum frequency may be greater.


TTL SWITCHING CIRCUIT


ECL/TTL PROPAGATION DELAY — SINGLE ENDED

ECL/TTL WAVEFORMS: RISE AND FALL TIMES

16-PIN SOIC .300" WIDE (Z16-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.