

3 A High Voltage Schottky Barrier Rectifier

DESCRIPTION

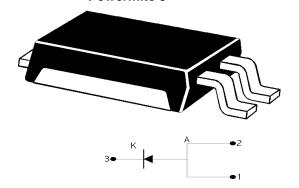
This UPS3100e3 in the Powermite3® package is a high efficiency Schottky rectifier that is also RoHS compliant offering high current/power capabilities previously found only in much larger packages. They are ideal for SMD applications that operate at high frequencies. In addition to its size advantages, the Powermite3® package includes a full metallic bottom that eliminates the possibility of solder flux entrapment during assembly and a unique locking tab act as an efficient heat path to the heat-sink mounting. Its innovative design makes this device ideal for use with automatic insertion equipment.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES

- Very low thermal resistance package
- RoHS Compliant with e3 suffix part number
- Guard-ring-die construction for transient protection
- Efficient heat path with Integral locking bottom metal tab
- Low forward voltage
- Full metallic bottom eliminates flux entrapment
- Compatible with automatic insertion
- Low profile-maximum height of 1mm

ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$egin{array}{c} V_{RRM} \ V_{RWM} \ \end{array}$	100	V
RMS Reverse Voltage	$V_{R(RMS)}$	70	V
Average Rectified Output Current	Io	3	Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine wave Superimposed on Rated Load@ T _c =90 °C	I _{FSM}	50	А
Storage Temperature	T_{STG}	-55 to +150	°C
Junction Temperature	T_J	-55 to +125	°C

THERMAL CHARACTERISTICS

Thermal Resistance			
Junction-to-Case (bottom)	$R_{\theta JC}$	2.5	°C/ Watt
Junction to Ambient (1)	Rain	65	°C/ Watt

(1) When mounted on FR-4 PC board using 2 oz copper with recommended minimum foot print

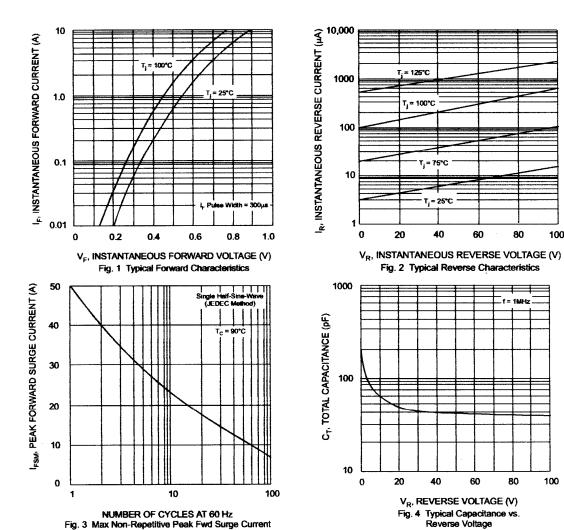
Powermite 3™

APPLICATIONS/BENEFITS

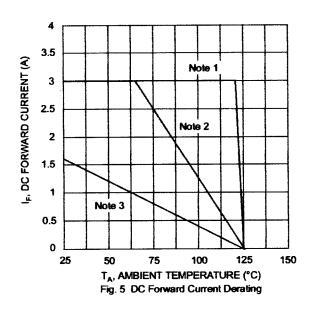
- Switching and Regulating Power Supplies.
- Silicon Schottky (hot carrier) rectifier for minimal reverse voltage recovery
- Elimination of reverse-recovery oscillations to reduce need for EMI filtering
- Charge Pump Circuits
- Reduces reverse recovery loss with low I_{RM}
- Small foot print 190 X 260 mils (1:1 Actual size)
 See mounting pad details on pg 3

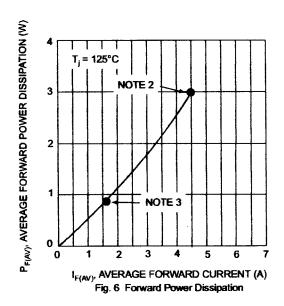
MECHANICAL & PACKAGING

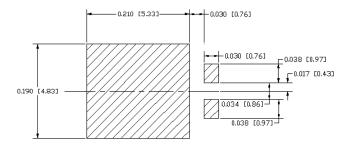
- CASE: Void-free transfer molded thermosetting epoxy compound meeting UL94V-0
- FINISH: Annealed matte-Tin plating over copper and readily solderable per MIL-STD-750 method 2026 (consult factory for Tin-Lead plating)
- POLARITY: See figure (left)
- MARKING: S3100•
- WEIGHT: 0.072 gram (approx.)
- · Package dimension on last page
- Tape & Reel option: 16 mm tape per Standard EIA-481-B, 5000 on 13" reel


Copyright © 2007 10-15-2007 Rev D

3 A High Voltage Schottky Barrier Rectifier

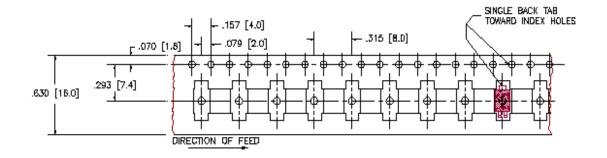

D 4	0 1 1	0 1141	2.5	_	3.4	
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Forward Voltage (Note 1)		$I_F = 3 \text{ A}, T_j = 25 ^{\circ}\text{C}$		0.72	0.76	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I _F = 3 A , T _j =100 °C		0.60	0.64	V
	V _F	$I_F = 6 \text{ A}$, $T_i = 25 ^{\circ}\text{C}$		0.79	0.83	V
		I _F = 6 A , T _i =100 °C		0.68	0.72	
Reverse Break Down Voltage						
(Note 1)	V_{BR}	$I_R = 0.2 \text{ mA}$	100			V
,	DIX.					
Reverse Current (Note1)		V _R = 100V, T _i = 25 °C		1.5	200	μΑ
,	I _F	V _R = 100V, T _i =100 °C		0.5	20	mΑ
		,				
Capacitance	C _T	V _R = 4 V: f = 1 MHz		85		pF


Note: 1 Short duration test pulse used to minimize self – heating effect.

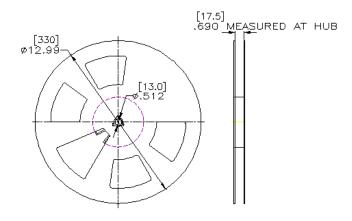

3 A High Voltage Schottky Barrier Rectifier

- Notes: 1. $T_A = T_{SOLDERING\ POINT}$, $R_{\Theta JS} = 2.5 \text{C/W}$, $R_{\Theta SA} = 0^{\circ} \text{C/W}$.
 - 2. Device mounted on GETEK substrate, 2" x 2", 2 oz. copper , double-sided , cathode pad dimensions 0.75" x 1.0", anode pad dimensions 0.25" x 1.0". $R_{\Theta JA}$ in range of 20-35°C/W.
 - 3. Device mounted on FRA-4 substrate, 2" x 2", 2 oz. copper, single-sided, pad layout $R_{\Theta JA}$ in range of 65°C/W. See mounting pad below.

MOUNTING PAD DIMENSIONS



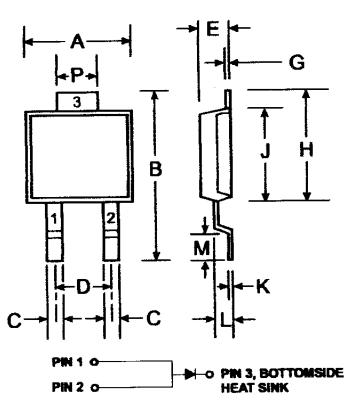
Mounting Pad Dimensions: inches [mm]



3 A High Voltage Schottky Barrier Rectifier

TAPE & REEL

13 INCH REEL



MECHANICA

3 A High Voltage Schottky Barrier Rectifier

PACKAGE DIMENSIONS

POWERMITE®3		
Dim	Min	Max
A	4.03	4.09
В	6.40	6.61
С	.889 NOM	
D	1.83 NOM	
Ε	1.10	1.14
G	.178 NOM	
Н	5.01	5.17
J	4.37	4.43
K	.178 NOM	
L	.71	.77
M	.36	.46
Р	1.73	1.83
All Dimensions in mm		

Note: Pins 1 & 2 must be electrically connected at the printed circuit board.

Copyright © 2007 10-15-2007 Rev D