

ATTENUATOR AND POWER PIN DIODES 2 – 30 MHz



#### **RoHS Compliant Versions Available**

#### DESCRIPTION

UM2100 Series PIN diodes are designed for transmit/receive switch and attenuator applications in HF band (2-30MHz) and below. As series configured switches, these long lifetime (25µs typical) diodes can control up to 2.5 kW, CW in a 50 ohm system. In HF band, insertion loss is less than 0.25dB and isolation is greater than 32dB (off-state).

The UM2100 series offers the lowest distortion performance in both transmit and receive modes. Less than 50 mA forward bias is requires to obtain an IP3 of 60 dBm at 300 kHz with 1 watt per tone. The forward biased resistance/reactance vs. frequency characteristics are flat down to 10 kHz. The capacitance vs. reverse bias voltage characteristic is flat down to 2 MHz. In attenuator configuration, the UM2100 produces extremely low distortion at low values of attenuator control current, and very low insertion loss (0.2dB) in the "0dB" attenuator state.

IMPORTANT: For the most current data, consult our website: www.MICROSEMI.com

#### **KEY FEATURES**

- HF band (2-30 MHz) PIN
- Long Lifetime (25µs typical)
- High Power (1kW, CW)
- High Isolation (32dB)
- Low Loss (0.25dB)
- Very Low Distortion (IP3=60dBm)
- Voltage ratings to 1000 V
- RoHS compliant packaging Available<sup>1</sup> (use UMX2101B, etc.)

| ABSOLUTE MAXIMUM RATINGS AT 25° C<br>(UNLESS OTHERWISE SPECIFIED) |                                                   |                                               |      |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------|--|--|--|--|--|
| Package                                                           | Conditions                                        | (P <sub>D</sub> ) Power<br>Dissapation<br>(W) | (    |  |  |  |  |  |
| Α                                                                 | 25 <sup>O</sup> C Pin Temperature                 | 25                                            | 50V  |  |  |  |  |  |
| В                                                                 | $\frac{1}{2}$ in. total length to 25 $^{\rm O}$ C | 12                                            | 12.5 |  |  |  |  |  |
| E                                                                 | Contact Free Air                                  | 2.5                                           |      |  |  |  |  |  |
| С                                                                 | 25 <sup>o</sup> C Stud Temperature                | 25                                            | 6    |  |  |  |  |  |
| D                                                                 | 25 <sup>o</sup> C Stud Temperature                | 18.75                                         | 8    |  |  |  |  |  |
| SM                                                                | 25 <sup>o</sup> C End Cap Temperature             | 15                                            | 10   |  |  |  |  |  |
| ALL                                                               | 1 us pulse (Single)                               | 100KW                                         |      |  |  |  |  |  |
| ALL                                                               | Storage Temperature (T <sub>OP</sub> )            | -65 °C to + 175 °C                            |      |  |  |  |  |  |
| ALL                                                               | Operating Temperature (T <sub>OP</sub> )          | -65 <sup>o</sup> C to + 175 <sup>o</sup> C    |      |  |  |  |  |  |

# 

<sup>1</sup> The UM2100 series of products can be supplied with a RoHS compliant finish (UMX2100) or with a 90/10 Sn/Pb finish. Consult factory for details.



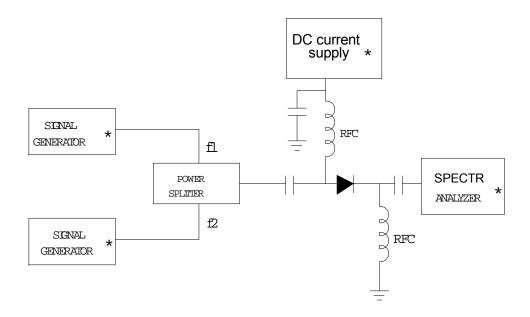
#### **APPLICATIONS/BENEFITS**

- Isolated stud package available •
- Surface mount package available
- Soldering temperature: 260 °C for 10 seconds maximum



ATTENUATOR AND POWER PIN DIODES 2 – 30 MHz

RoHS Compliant Versions Available




| VOLTAGE RATINGS<br>@ 25°C (unless otherwise specified) |                            |  |  |  |  |
|--------------------------------------------------------|----------------------------|--|--|--|--|
| Part Number                                            | Reverse Voltage @ 10uA (V) |  |  |  |  |
| UM2101                                                 | 100                        |  |  |  |  |
| UM2102                                                 | 200                        |  |  |  |  |
| UM2104                                                 | 400                        |  |  |  |  |
| UM2106                                                 | 600                        |  |  |  |  |
| UM2108                                                 | 800                        |  |  |  |  |
| UM2110                                                 | 1000                       |  |  |  |  |



| ELECTRICAL PARAMETERS @ 25°C (unless otherwise specified) |                |                                                                      |      |         |      |       |  |
|-----------------------------------------------------------|----------------|----------------------------------------------------------------------|------|---------|------|-------|--|
| Parameter                                                 | Symbol         | Conditions                                                           | MIN. | TYPICAL | MAX. | Units |  |
| Total Capacitance                                         | CT             | V <sub>R</sub> =100V, F= 1 MHz                                       |      | 1.9     | 2.5  | pF    |  |
| Series Resistance                                         | Rs             | If = 100 mA, F= 2 MHz                                                |      | 1.0     | 2.0  | Ohms  |  |
| Carrier Lifetime                                          | TL             | I <sub>F</sub> = 10 mA/100 V                                         | 20   | 25      |      | μs    |  |
| Reverse Current                                           | I <sub>R</sub> | $V_R$ = Voltage rating                                               |      |         | 10   | μA    |  |
| Intermodulation Distortion                                | IP3            | P=2W total, I <sub>F</sub> =25mA<br>F1 = 1.999 MHz<br>F2 = 2.001 MHz | 50   | 60      |      | dBm   |  |
|                                                           |                | 1.0 W/tone                                                           |      |         |      |       |  |

#### **Intermodulation Distortion Test Circuit**



\* May be controlled with the IEEE-488 bus circuit.

Downloaded from Arrow.com.



TYPICAL RS VS IF

# **UM2100**

ATTENUATOR AND POWER PIN DIODES 2 – 30 MHz



10

**RoHS Compliant Versions Available** 

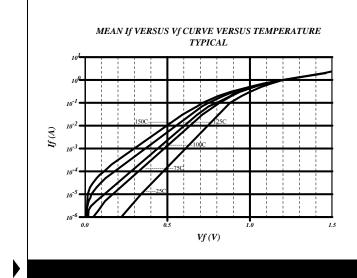
TYPICAL RS / REACTANCE VS FREQ

#### Rs versus If TYPICAL **RESISTANCE / REACTANCE VERSUS FREQUENCY TYPICAL** $f = 2 MH_7$ 2.0 RESISTANCE / REACTANCE (Ohms) If = 100 mA 1 Rs (Ohms) RESISTANCE 1.6 0.5 EACTANCE 0.0 10-1 100 10 If (mA) -0.5 102 10 10 106 FREQUENCY (Hz) CAPACITANCE VS VOLTAGE **POWER/TONE VS IF** POWER LEVEL/TONE VERSUS FORWARD BIAS CURRENT TYPICAL CAPACITANCE VERSUS VOLTAGE F1 = F - 1 KHz TYPICAL $F2 = F + 1 \ KHz$ POWER LEVEL/TONE [dBm] 3 30 IP3 [dBm] CAPACITANCE (pF) 12 25 20 2 MH 15 45 10 10 MH 10 If NEEDED TO OBTAIN AN IM3 OF -60 dBc [mA] 10 Vr(V)

# www.MICROSEMI.com

# GRAPHS




ATTENUATOR AND POWER PIN DIODES 2 – 30 MHz

#### **RoHS Compliant Versions Available**

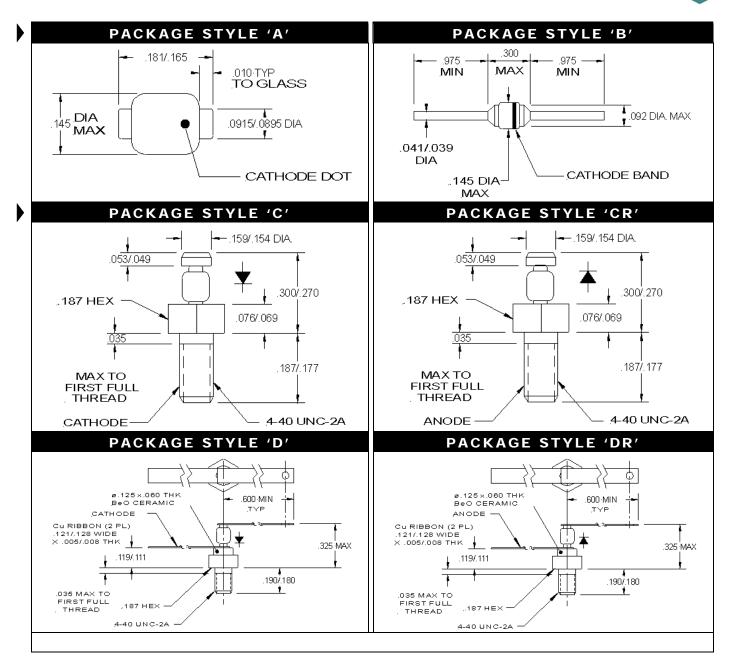


www.MICROSEMI.com

#### I/V VS TEMP



Downloaded from Arrow.com.




ATTENUATOR AND POWER PIN DIODES

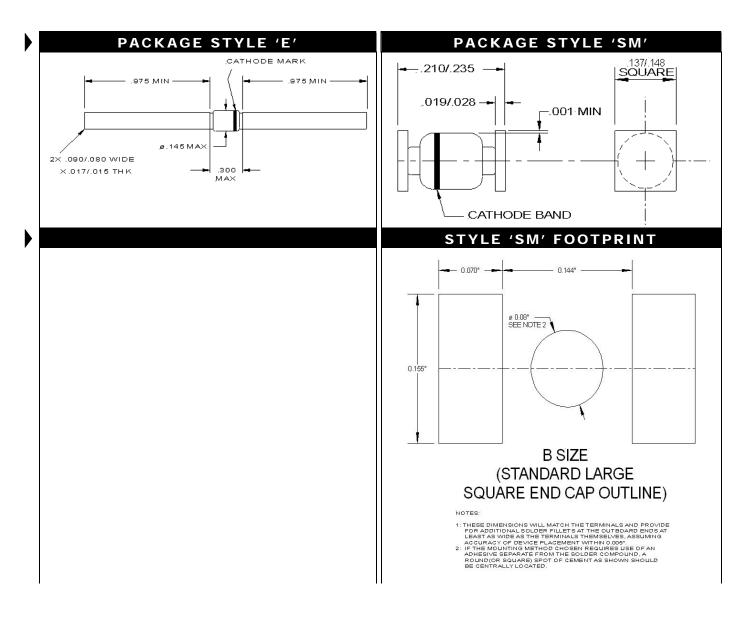
2 – 30 MHz

RoHS

**RoHS Compliant Versions Available** 



Copyright © 2007 Rev: 2009-01-19


Downloaded from Arrow.com.



ATTENUATOR AND POWER PIN DIODES

2 – 30 MHz

**RoHS Compliant Versions Available** 



#### NOTES:

- 1 These dimensions will match the terminals and provide for additional solder fillets at the outboard ends at least as wide as the terminals themselves, assuming accuracy of placement within 0.005"
- 2 If the mounting method chosen requires use of an adhesive separate from the solder compound, a round (or square) spot of cement as shown should be centrally located.