

Single-Phase High-Performance Wide-Span Energy Metering IC

PRELIMINARY DATASHEET

FEATURES

Metering Features

- Metering features fully in compliance with the requirements of IEC62052-11 and IEC62053-21; applicable in class 1 or class 2 single-phase watt-hour meter.
- Accuracy of 0.1% for active energy over a dynamic range of 5000:1.
- Temperature coefficient is 15 ppm/ °C (typical) for on-chip reference voltage
- Single-point calibration over a dynamic range of 5000:1 for active energy.
- Energy Meter Constant doubling at low current to save verification time.
- Electrical parameters measurement: less than $\pm 0.5\%$ fiducial error for Vrms, Irms, mean active/ apparent power, frequency, power factor and phase angle.
- Forward/ reverse active energy with independent energy registers. Active energy can be output by pulse or read through energy registers to adapt to different applications.
- Programmable startup and no-load power threshold.
- Dedicated ADC and different gains for L line and N line current sampling circuits.
 Current sampled over shunt resistor or current transformer (CT); voltage sampled over resistor divider network or potential transformer (PT).
- Programmable L line and N line metering modes: anti-tampering mode (larger power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire system) and flexible mode (configure through register).
- Programmable L line and N line power difference threshold in anti-tampering mode.

Other Features

- 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy guaranteed within 3.0V~3.6V. 5V compatible for digital input.
- Built-in hysteresis for power-on reset.
- Four-wire SPI interface or simplified three-wire SPI interface with fixed 24 cycles for all registers operation
- Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
- Programmable voltage sag detection and zero-crossing output.
- Channel input range
 - Voltage channel (when gain is '1'): 120μVrms~600mVrms.
 - L line current channel (when gain is '24'): 5μVrms~25mVrms.
 - N line current channel (when gain is '1'): 120μVrms~600mVrms.
- Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
- Support L line and N line offset compensation.
- CF1 outputs active energy pulses which can be used for calibration or energy accumulation.
- Crystal oscillator frequency: 8.192 MHz. On-chip 10pF capacitors and no need of external capacitors.
- · Green SSOP28 package.
- Operating temperature: -40 $^{\circ}$ C ~ +85 $^{\circ}$ C .

APPLICATION

• The M90E25 is used for active energy metering for single-phase two-wire (1P2W), single-phase three-wire (1P3W) or anti-tampering energy meters. With the measurement function, the M90E25 can also be used in power instruments which need to measure voltage, current, etc.

DESCRIPTION

The M90E25 is high-performance wide-span energy metering chips. The ADC and DSP technology ensure the chips' long-term stability over variations in grid and ambient environmental conditions.

BLOCK DIAGRAM

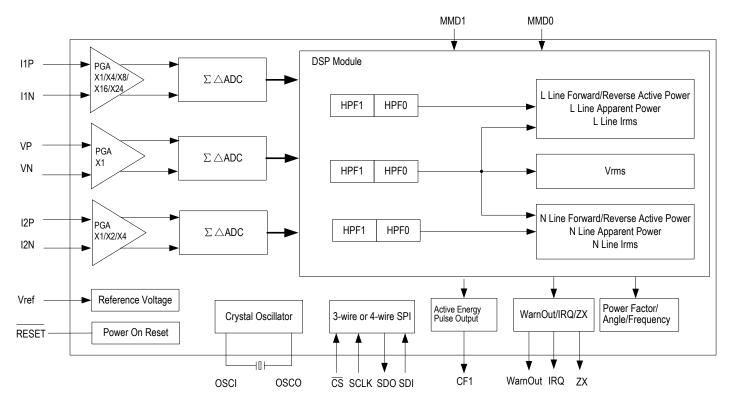


Figure-1 Block Diagram

Table of Contents

F	FEATURES	1
A	APPLICATION	2
D	DESCRIPTION	2
В	BLOCK DIAGRAM	2
1	I PIN ASSIGNMENT	7
	2 PIN DESCRIPTION	
3	FUNCTIONAL DESCRIPTION	
	3.1 DYNAMIC METERING RANGE	
	3.2 STARTUP AND NO-LOAD POWER	
	3.3 ENERGY REGISTERS	
	3.4 N LINE METERING AND ANTI-TAMPERING	
	3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	
	3.4.2 Anti-Tampering Mode	
	3.5.1 Measurement	
	3.5.2 Zero-Crossing	
	3.6 CALIBRATION	
	3.7 RESET	
1	1 INTERFACE	
4	4.1 SERIAL PERIPHERAL INTERFACE (SPI)	
	4.1.1 Four-Wire Mode	
	4.1.2 Three-Wire Mode	
	4.1.3 Timeout and Protection	
	4.2 WARNOUT PIN FOR FATAL ERROR WARNING	
	4.3 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU	
5	5 REGISTER	10
•	5.1 REGISTER LIST	
	5.2 STATUS AND SPECIAL REGISTER	
	5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION	
	5.3.1 Metering Calibration and Configuration Register	
	5.3.2 Measurement Calibration Register	
	5.4 ENERGY REGISTER	37
	5.5 MEASUREMENT REGISTER	40
6	S ELECTRICAL SPECIFICATION	46
	6.1 ELECTRICAL SPECIFICATION	46
	6.2 SPI INTERFACE TIMING	
	6.3 POWER ON RESET TIMING	
	6.4 ZERO-CROSSING TIMING	5′

6.5 VOLTAGE SAG TIMING	52
6.6 PULSE OUTPUT	53
6.7 ABSOLUTE MAXIMUM RATING	
ORDERING INFORMATION	
PACKAGE DIMENSIONS	
REVISION HISTORY	

List of Tables

Table-1 Pin Description	8
Table-2 Active Energy Metering Error	10
Table-3 Threshold Configuration for Startup and No-Load Power	10
Table-4 Energy Registers	10
Table-5 Metering Mode	11
Table-6 The Measurement Format	12
Table-7 Read / Write Result in Four-Wire Mode	17
Table-8 Read / Write Result in Three-Wire Mode	17
Table-9 Register List	19
Table-10 SPI Timing Specification	49
Table-11 Power On Reset Specification	50
Table-12 Zero-Crossing Specification	51
Table-13 Voltage Sag Specification	52

List of Figures

Figure-1	Block Diagram	. 2
Figure-2	Pin Assignment (Top View)	. 7
Figure-3	Read Sequence in Four-Wire Mode	15
Figure-4	Write Sequence in Four-Wire Mode	15
Figure-5	Read Sequence in Three-Wire Mode	16
Figure-6	Write Sequence in Three-Wire Mode	16
Figure-7	4-Wire SPI Timing Diagram	48
Figure-8	3-Wire SPI Timing Diagram	48
Figure-9	Power On Reset Timing Diagram	50
Figure-10) Zero-Crossing Timing Diagram	51
Figure-11	Voltage Sag Timing Diagram	52
Figure-12	2 Output Pulse Width	53

1 PIN ASSIGNMENT

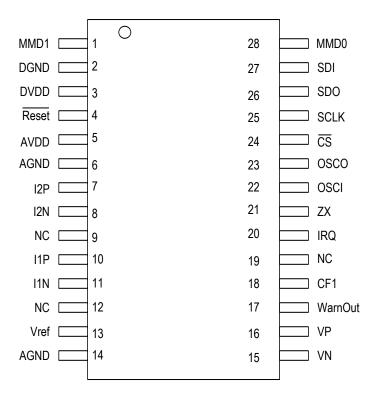


Figure-2 Pin Assignment (Top View)

2 PIN DESCRIPTION

Table-1 Pin Description

Name	Pin No.	I/O note 1	Туре	Description		
Reset	4	I	LVTTL	Reset: Reset Pin (active low) This pin should connect to ground through a 0.1μF filter capacitor. In appli cation it can also directly connect to one output pin from microcontrolle (MCU).		
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a $10\mu F$ electrolytic capacitor and a $0.1\mu F$ capacitor.		
DGND	2	I	Power	DGND: Digital Ground		
AVDD	5	-	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. This pin should connect to DVDD through a 10Ω resistor and be decoupled with a $0.1\mu F$ capacitor.		
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μF capacitor and a 1nF capacitor.		
AGND	6, 14	I	Power	AGND: Analog Ground		
I1P I1N	10 11	_	Analog	I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5μVrms~25mVrms when gain is '24'.		
12P 12N	7 8	I	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120μVrms~600mVrms when gain is '1'.		
VP VN	16 15	I	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.		
NC	9, 12, 19			NC: These pins could be left open or connect to ground.		
CS	24	I	LVTTL	CS: Chip Select (Active Low) In 4-wire SPI mode, this pin must be driven from high to low for each read/write operation, and maintain low for the entire operation. In 3-wire SPI mode, this pin must be low all the time. Refer to section 4.1.		
SCLK	25	I	LVTTL	SCLK: Serial Clock This pin is used as the clock for the SPI interface. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK.		
SDO	26	OZ	LVTTL	SDO: Serial Data Output This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.		
SDI	27	I	LVTTL	SDI: Serial Data Input This pin is used as the data input for the SPI interface. Address and data on this pin is shifted into the chip on the rising edge of SCLK.		
MMD1 MMD0	1 28	I	LVTTL	MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L+N mode (applicable for single-phase three-wire system); 11: flexible mode (line specified by the LNSel bit (MMode, 2BH))		
OSCI	22	I	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. There is an on-chip 10pF capacitor, therefore no need of external capacitors.		

Table-1 Pin Description (Continued)

Name	Pin No.	I/O note 1	Туре	Description	
OSCO	23	0	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. There is on-chip 10pF capacitor, therefore no need of external capacitors.	
CF1	18	0	LVTTL	CF1: Active Energy Pulse Output This pin outputs active energy pulses.	
ZX	21	0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH).	
IRQ	20	0	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It is deasserted when there is no bit set in the SysStatus register (01H).	
WarnOut	17	0	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error of voltage sag. Refer to section 4.2.	
Note 1: All digital inputs are 5V tolerant except for the OSCI pin.					

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering over a dynamic range of 5000:1 (typical). Refer to Table-2.

Table-2 Active Energy Metering Error

Current	Power Factor	Error(%)			
20mA ≤ I < 50mA	1.0	±0.2			
50mA ≤ I ≤ 100A]	±0.1			
50mA ≤ I < 100mA	0.5 (Inductive)	±0.2			
100mA ≤ I ≤ 100A	0.8 (Capacitive)	±0.1			
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6Ω .					

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable. The related registers are listed in Table-3.

Table-3 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H

The chip will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or sin ϕ is 1.0.

The chip has no-load status bits, the Pnoload bit (EnStatus, 46H). The chip will not output any active pulse (CF1) in active no-load state.

3.3 ENERGY REGISTERS

The M90E25 provides energy pulse output CF1 which is proportionate to active energy. Energy is usually accumulated by adding the CF1 pulses in system applications. Alternatively, the M90E25 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers. Refer to Table-4.

Table-4 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The M90E25 has two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-5.

Table-5 Metering Mode

MMD1	MMD0	Metering Mode	CF1 Output
0	0	Anti-tampering Mode (larger power)	CF1 represents the larger energy line. Refer to section 3.4.2.
0	1		CF1 represents L line energy all the time.
1			CF1 represents the arithmetic sum of L line and N line energy
1	1	Flexible Mode (line specified by the LNSel bit (MMode, 2BH))	CF1 represents energy of the specified line.

The M90E25 has two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and 1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The M90E25 has the following measurements:

- · voltage rms
- · current rms (L line/N line)
- mean active power (L line/N line)
- voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E \, rror = \frac{U_{mea} - U_{real}}{U_{rv}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and U_{FV} is the fiducial value.

Table-6 The Measurement Format

Measurement	Fiducial Value (FV)	M90E25 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	lmax as 4lb	XX.XXX	0~65.535A	
Active Power ^{note 1}	maximum power as Un*4lb	XX.XXX	-32.768~+32.767 kW	Complement, MSB as the sign bit
Apparent Power ^{note 1}	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle ^{note 4}	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the M90E25, the actual active/apparent power is also twice of that of the chip.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{FV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Calibration includes metering and measurement calibration.

Metering Calibration

The M90E25 design methodology guarantees the accuracy over the entire dynamic range, after metering calibration at one specific current, i.e. the basic current of I_b.

The calibration procedure includes the following steps:

- 1. Calibrate gain at unity power factor;
- 2. Calibrate phase angle compensation at 0.5 inductive power factor.

Generally, line current sampling is susceptible to the circuits around the sensor when shunt resistor is employed as the current sensor in L line. For example, the transformer in the energy meter's power supply may conduct interference to the shunt resistor. Such interference will cause perceptible metering error, especially at low current conditions. The total interfere is at a statistically constant level. In this case, the M90E25 provides the power offset compensation feature to improve metering performance.

L line and N line need to be calibrated sequentially.

Measurement Calibration

Measurement calibration includes gain calibration for voltage rms and current rms.

Considering the possible nonlinearity around zero caused by external components, the M90E25 also provides offset compensation for voltage rms, current rms and mean active power.

The M90E25 design methodology guarantees automatic calibration for frequency, phase angle and power factor measurement.

3.7 RESET

The M90E25 has an on-chip power supply monitor circuit with built-in hysteresis. The M90E25 only works within the voltage range.

The M90E25 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over 200μs.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

4.1 SERIAL PERIPHERAL INTERFACE (SPI)

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: \overline{CS} , SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastSPIData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the \overline{CS} pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-3, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

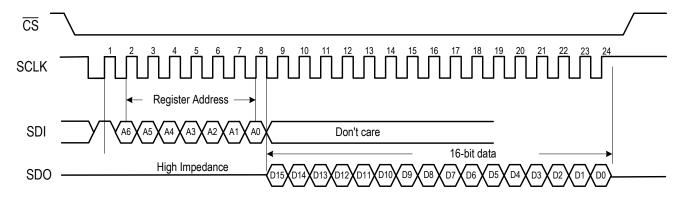


Figure-3 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-4, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

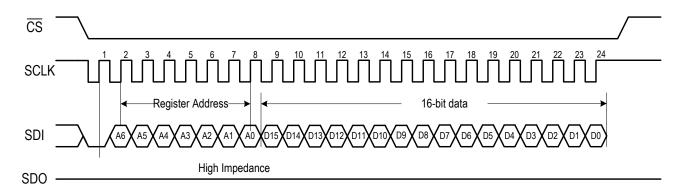


Figure-4 Write Sequence in Four-Wire Mode

4.1.2 THREE-WIRE MODE

In three-wire mode, $\overline{\text{CS}}$ is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400 μ s. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-5 and Figure-6.

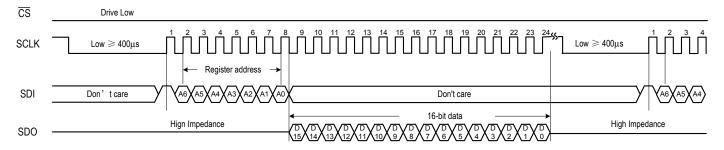


Figure-5 Read Sequence in Three-Wire Mode

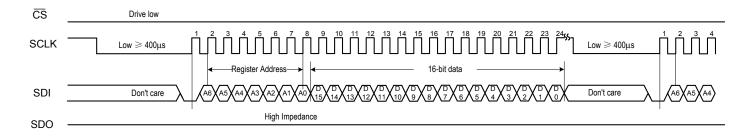


Figure-6 Write Sequence in Three-Wire Mode

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when $\overline{\text{CS}}$ is driven low in four-wire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-7 and Table-8 list the read or write result in different conditions.

Table-7 Read / Write Result in Four-Wire Mode

	Condition	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update
	note 2	>=24	Normal Read	Yes
Read	note 2	<24	Partial Read	No
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 1: The number of SCLK cycles when \overline{CS} is driven low or the number of SCLK cycles before timeout if any.

Note 2: '-' stands for Don't Care.

Table-8 Read / Write Result in Three-Wire Mode

	Condition	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update
	No	>=24 ^{note 2}	Normal Read	Yes
	Timeout after 24 cycles	>24	Normal Read	Yes
	Timeout before 24 cycles	note 3	Partial Read	No
Read	Timeout at 24 cycles	=24	Normal Read	Yes
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any.

Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted.

Note 3: '-' stands for Don't Care.

4.2 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The M90E25 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.3 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the M90E25 is isolated from the MCU:

SPI: MCU can perform read and write operations through low speed optocoupler (e.g. PS2501) when the M90E25 is isolated from the MCU. The SPI interface can be of 3-wire or 4-wire.

Energy Pulses CF1: Energy can be accumulated by reading values in corresponding energy registers. CF1 can also connect to the optocoupler and the energy pulse light can be turned on by CF1.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalErr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The M90E25 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 REGISTER

5.1 REGISTER LIST

Table-9 Register List

Register Address	Register Name	Read/Write Type	Functional Description	Page
1		Status and S	pecial Register	.
00H	SoftReset	W	Software Reset	P 21
01H	SysStatus	R/C	System Status	P 22
02H	FuncEn	R/W	Function Enable	P 23
03H	SagTh	R/W	Voltage Sag Threshold	P 23
04H	SmallPMod	R/W	Small-Power Mode	P 24
06H	LastSPIData	R	Last Read/Write SPI Value	P 24
4		Metering Calibration ar	nd Configuration Register	
20H	CalStart	R/W	Calibration Start Command	P 25
21H	PLconstH	R/W	High Word of PL_Constant	P 25
22H	PLconstL	R/W	Low Word of PL_Constant	P 26
23H	Lgain	R/W	L Line Calibration Gain	P 26
24H	Lphi	R/W	L Line Calibration Angle	P 26
25H	Ngain	R/W	N Line Calibration Gain	P 27
26H	Nphi	R/W	N Line Calibration Angle	P 27
27H	PStartTh	R/W	Active Startup Power Threshold	P 27
28H	PNolTh	R/W	Active No-Load Power Threshold	P 28
2BH	MMode	R/W	Metering Mode Configuration	P 29
2CH	CS1	R/W	Checksum 1	P 31
L		Measurement C	alibration Register	<u> </u>
30H	AdjStart	R/W	Measurement Calibration Start Command	P 32
31H	Ugain	R/W	Voltage rms Gain	P 32
32H	IgainL	R/W	L Line Current rms Gain	P 33
33H	IgainN	R/W	N Line Current rms Gain	P 33
34H	Uoffset	R/W	Voltage Offset	P 33
35H	loffsetL	R/W	L Line Current Offset	P 34
36H	IoffsetN	R/W	N Line Current Offset	P 34
37H	PoffsetL	R/W	L Line Active Power Offset	P 34
39H	PoffsetN	R/W	N Line Active Power Offset	P 35
3ВН	CS2	R/W	Checksum 2	P 36
L		Energy	/ Register	
40H	APenergy	R/C	Forward Active Energy	P 37
41H	ANenergy	R/C	Reverse Active Energy	P 38
42H	ATenergy	R/C	Absolute Active Energy	P 38
46H	EnStatus	R	Metering Status	P 39
		Measurem	nent Register	
48H	Irms	R	L Line Current rms	P 40
49H	Urms	R	Voltage rms	P 40
4AH	Pmean	R	L Line Mean Active Power	P 41
4CH	Freq	R	Voltage Frequency	P 41

Table-9 Register List (Continued)

Register Address	Register Name	Read/Write Type	Functional Description	Page
4DH	PowerF	R	L Line Power Factor	P 42
4EH	Pangle	R	Phase Angle between Voltage and L Line Current	P 42
4FH	Smean	R	L Line Mean Apparent Power	P 43
68H	Irms2	R	N Line Current rms	P 43
6AH	Pmean2	R	N Line Mean Active Power	P 44
6DH	PowerF2	R	N Line Power Factor	P 44
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	P 45
6FH	Smean2	R	N Line Mean Apparent Power	P 45

5.2 STATUS AND SPECIAL REGISTER

SoftReset Software Reset

Ty	ddress: 00H /pe: Write efault Value:		DН							
	15		14		13	12	11	10	9	8
	SoftReset1	15	SoftRese	t14	SoftReset13	SoftReset12	SoftReset11	SoftReset10	SoftReset9	SoftReset8
	7		6		5	4	3	2	1	0
	SoftReset	7	SoftRese	et6	SoftReset5	SoftReset4	SoftReset3	SoftReset2	SoftReset1	SoftReset0
	Bit		Name				Descri	ption		
	15 - 0	_	SoftRe- et[15:0]	Soft	ware reset regist	er. The XXXXX	resets if only 78	39AH is written to	this register.	

Downloaded from Arrow.com.

SysStatus System Status

Address: 01H Type: Read/Clear Default Value: 0000H									
15	14	13	12	11	10	9	8		
CalErr1	CalErro	0 AdjErr1	AdjErr0	-	-	-	-		
7	6	5	5 4 3 2 1						
LNchange	-	RevPchg	-	-	-	SagWarn	-		
Bit	Name			Descri	ption				
15 - 14	CalErr[1:0]	These bits indicate 00: CS1 checksum 11: CS1 checksum	correct (default)		Out pin is asserte	ed.			
13 - 12	AdjErr[1:0]	These bits indicate 00: CS2 checksum 11: CS2 checksum	correct (default)	tatus.					
11 - 8	-	Reserved.							
7	LNchange	This bit indicates w 0: metering line no 1: metering line cha	change (default)	y change of the	metering line (L I	ine and N line).			
6	-	Reserved.							
5	RevPchg	This bit indicates w 0: direction of active 1: direction of active This status is enable	e energy no change e energy changed	ge (default) I		tive energy.			
4 - 2	-	Reserved.							
This bit indicates the voltage sag status. 0: no voltage sag (default) 1: voltage sag Voltage sag is enabled by the SagEn bit (FuncEn, 02H). Voltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(Func 02H).						SagWo bit(FuncEn			
0	-	Reserved.							
Note: Any of the above events will prompt the IRQ pin to be asserted, which can be supplied to external MCU as an interrupt.									

FuncEn Function Enable

	Address: 02H Type: Read/Write Default Value: 000CH									
15	14	13	12	11	10	9	8			
-	-	-	-	-	-	-	-			
7	6	5	4	3	2	1	0			
-	-	SagEn	SagWo	-	RevPEn	-	-			
Bit	Name			Descri	ption					
15 - 6	-	Reserved.								
5	SagEn	This bit determines v 0: disable (default) 1: enable	vhether to enabl	e the voltage sag	j interrupt.					
4	SagWo	This bit determines v 0: disable (default) 1: enable	vhether to enabl	e voltage sag to	be reported by th	ne WarnOut pin.				
3	-	Reserved.								
2	RevPEn	This bit determines v 0: disable 1: enable (default)	vhether to enabl	e the direction ch	nange interrupt o	f active energy.				
1 - 0	-	Reserved.								

SagTh Voltage Sag Threshold

Ту	ddress: 03H pe: Read/W efault Value:	/rite						
	15	14	13	12	11	10	9	8
	SagTh15	SagTh1	4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8
	7	6	5	4	3	2	1	0
	SagTh7	SagTh	6 SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0
	Bit	Name	<u> </u>		Dosori	intion		
Bit Name Description Voltage sag threshold configuration. Data format is XXX.XX. Unit is V.								
	15 - 0	SagTh[15:0]	The power-on value For details, please	e of SagTh is 1D6	AH, which is cal			*Ugain/32768)

Small-Power Mode

T	Address: 04H Type: Read/Write Default Value: 0000H									
	15		14		13	12	11	10	9	8
	SmallPMod 5	d1	SmallPMo 4	od1	SmallPMod1	SmallPMod1	SmallPMod1 1	SmallPMod1 0	SmallPMod9	SmallPMod8
	7		6		5	4	3	2	1	0
	SmallPMod	d7	SmallPMo	od6	SmallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0
	Bit	N	Name				Descri	ption		
	15 - 0 SmallP- Mod[15:0]		Small-power mode command. A987H: small-power mode. The relationship between the register value of L line and N line active power in small-power mode and normal mode is: power in normal mode = power in small-power mode *10*Igain*Ugain /2^42 Others: Normal mode. Small-power mode is mainly used in the power offset calibration.							

LastSPIData Last Read/Write SPI Value

Т	Address: 06H ype: Read Default Value:							
	15	14	13	12	11	10	9	8
	LastSPIData1 LastSPIDa 5 4		LastSPIData1	LastSPIData1	LastSPIData1 1	LastSPIData1 0	LastSPIData9	LastSPIData8
	7	6	5	4	3	2	1	0
	LastSPIData	a7 LastSPIDa	ta6 LastSPIData5	LastSPIData4	LastSPIData3	LastSPIData2	LastSPIData1	LastSPIData0
	LastSPIData	a7 LastSPIDa	ta6 LastSPIData5	LastSPIData4	LastSPIData3	LastSPIData2	LastSPIData1	LastSPIData0
	LastSPIData Bit	LastSPIDa	ta6 LastSPIData5	LastSPIData4	LastSPIData3		LastSPIData1	LastSPIData0

5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION

5.3.1 METERING CALIBRATION AND CONFIGURATION REGISTER

CalStart

Calibration Start Command

Address: 20H Type: Read/Write Default Value: 6886H								
15 14		13	12	11	10	9	8	
CalStart1	5 CalStart	14 CalStart13	CalStart12	CalStart11	CalStart10	CalStart9	CalStart8	
7	6	5	4	3	2	1	0	
CalStart7	CalStart	6 CalStart5	CalStart4	CalStart3	CalStart2	CalStart1	CalStart0	
							<u>'</u>	
Bit	Name	Description						
15 - 0	CalStart[15:0]	of the correct IRQ pins do r 8765H: Check the co ing function is report warnin Others: Metering fur	lue. Metering fur ibration startup of the power-on valueness of diagnosis of report any was prrectness of the sidisabled, the Cg/interrupt.	command. After es. The M90E25 s. The CalErr[1:0 rrning/interrupt. 21H-2BH registe CalErr[1:0] bits (\$	5678H is written starts to meter a] bits (SysStatus ers. If correct, no SysStatus, 01H)	and output energy, 01H) are not se rmal metering. If are set and the	y pulses regardless et and the WarnOut/ not correct, meter- WarnOut/IRQ pins	

PLconstH High Word of PL_Constant

	Address: 21H Type: Read/Write Default Value: 0015H								
15	14	13	12	11	10	9	8		
PLconstH ²	15 PLconstl	H14 PLconstH13	PLconstH12	PLconstH11	PLconstH10	PLconstH9	PLconstH8		
7	6	5	4	3	2	1	0		
PLconstH	7 PLconst	H6 PLconstH5	PLconstH4	PLconstH3	PLconstH2	PLconstH1	PLconstH0		
Bit	Name			Descri	ption				
15 - 0	PLcon- stH[15:0]	The PLconstH[15:0] PL_Constant is a conversely proportion chip, i.e., energy lar then output on CF1. It is suggested to see current state to save Note: PLconstH take For details, please r	constant which is all to the Meter C ger than PL_Conet PL_constant a everification time es effect after PL	s proportional to constant. PL_Cornstant will be according a multiple of 4 constL are config	o the sampling of the stant is a thresh umulated in the constant so as to double	ratios of voltage old for energy caper corresponding energy energy caper corresponding energy	e and current, and alculated inside the nergy registers and		

PLconstL Low Word of PL_Constant

T	Address: 22H Type: Read/Write Default Value: D174H									
	15	14	13	12	11	10	9	8		
	PLconstL1	5 PLconstL	_14 PLconstL1	3 PLconstL12	PLconstL11	PLconstL10	PLconstL9	PLconstL8		
	7	6	5	4	3	2	1	0		
	PLconstL [*]	7 PLconst	L6 PLconstL5	PLconstL4	PLconstL3	PLconstL2	PLconstL1	PLconstL0		
								,		
	Bit Name Description									
	15 - 0	PLcon- stL[15:0]	_	:0] and PLconstL[1 set PL_constant as				•		

Lgain L Line Calibration Gain

Address: 23H Type: Read/W Default Value:	rite								
15	14	13	12	11	10	9	8		
Lgain15	Lgain14	4 Lgain13	Lgain12	Lgain11	Lgain10	Lgain9	Lgain8		
7	6	5	4	3	2	1	0		
Lgain7	Lgain6	Lgain5	Lgain4	Lgain3	Lgain2	Lgain1	Lgain0		
Bit	Name			Descri	ption				
15 - 0	Lgain[15:0]	L line calibration gain. For details, please refer to application note 46101.							

Lphi L Line Calibration Angle

Address: 24H Type: Read/W Default Value:	/rite							
15	14	13	12	11	10	9	8	
Lphi15	-	-	-	-	-	Lphi9	Lphi8	
7	6	5	4	3	2	1	0	
Lphi7	Lphi6	Lphi5	Lphi4	Lphi3	Lphi2	Lphi1	Lphi0	
		T						
Bit	Name			Descri	ption			
15 - 0	Lphi[15:0]	hi[15:0] L line calibration phase angle. For details, please refer to application note 46101.						

Ngain N Line Calibration Gain

Address: 25H Type: Read/W Default Value:	/rite							
15	14	13	12	11	10	9	8	
Ngain15	Ngain1	4 Ngain13	Ngain12	Ngain11	Ngain10	Ngain9	Ngain8	
7	6	5	4	3	2	1	0	
Ngain7	Ngain6	S Ngain5	Ngain4	Ngain3	Ngain2	Ngain1	Ngain0	
Bit	Name			Descri	ntion			
15 - 0	Ngain[15:0] N line calibration gain. For details, please refer to application note 46101.							

Nphi N Line Calibration Angle

Address: 26H Type: Read/W Default Value:	/rite							
15	14	13	12	11	10	9	8	
Nphi15	-	-	-	-	-	Nphi9	Nphi8	
7	6	5	4	3	2	1	0	
Nphi7	Nphi6	Nphi5	Nphi4	Nphi3	Nphi2	Nphi1	Nphi0	
		Γ						
Bit	Name			Descri	ption			
15 - 0	Nphi[15:0]	N line calibration phase angle. For details, please refer to application note 46101.						

PStartTh Active Startup Power Threshold

	Bit Name Description 15 - 0 PStartTh[15:0 Active startup power threshold. For details, please refer to application note 46101.								
PS	StartTh7	7 PStartTh	n6 PStartTh5	PStartTh4	PStartTh3	PStartTh2	PStartTh1	PStartTh0	
	7	6	5	4	3	2	1	0	
PSt	tartTh1	5 PStartTh	14 PStartTh13	PStartTh12	PStartTh11	PStartTh10	PStartTh9	PStartTh8	
	15	14	13	12	11	10	9	8	
Address Type: R Default	Read/W	rite 08BDH							

PNoITh Active No-Load Power Threshold

Address: 28H Type: Read/W Default Value:	/rite								
15	14	13	12	11	10	9	8		
PNolTh1	5 PNoITh1	PNoITh13	PNolTh12	PNolTh11	PNolTh10	PNoITh9	PNoITh8		
7	6	5	4	3	2	1	0		
PNoITh7	' PNolTh	6 PNoITh5	PNolTh4	PNoITh3	PNolTh2	PNolTh1	PNolTh0		
Bit	Name			Descri	ption				
15 - 0	PNoITh[15:0]	olTh[15:0] Active no-load power threshold. For details, please refer to application note 46101.							

MMode Metering Mode Configuration

Address: 2BH Type: Read/W Default Value:	rite								
15	14	13	12	11	10)	9	8	
Lgain2	Lgain1	Lgain0	Ngain1	Ngain0	LNS	Sel	DisHPF1	DisHPF0	
7	6	5	4	3	2		1	0	
Amod	-	ZXCon1	ZXCon0	Pthresh3	Pthre	sh2	Pthresh1	Pthresh0	
Bit	Name		Description						
		L line current gain	ı, default value is	'100'.					
		Г	Lgain2	Lgain1	Lgain0	Curre	ent Channel Gain		
15 - 13	Lgain[2:0]		1	X	Χ		1		
15 - 15	Lgani[2.0]		0	0	0		4		
		_	0	0	1		8		
		_	0	1	0		16 24		
		L	U	ı		1	24		
12 - 11	Ngain[1:0]	N line current gair 00: 2 01: 4 10: 1 (default) 11: 1							
10	LNSel	This bit specifies MMD0 pins. 0: N line 1: L line (default)	metering as L lin	e or N line whe	n metering r	node is	set to flexible mo	de by MMD1 and	
		These bits configuent HPF0. The co				ere are	two first-order HF	PF in serial: HPF1	
			DisHPF1	DisHPF 0	HPI	F Confi	guration		
9 - 8	DisHPF[1:0]						and HPF0		
			0	0		(defai	ult) isable HPF0;		
			1	0			enable HPF0;		
			1	1			and HPF0		
			L		•				
_		CF1 output for ac			_				
7	Amod	0: forward or reve		output (default)				
		1: absolute energ	y pulse output						
6	-	Reserved.							

5 - 4	Zxcon[1:0]	zero. 00: positive ze 01: negative zo 10: all zero-cro	These bits configure zero-crossing mode. The ZX pin outputs 5ms-width high level when voltage crosses zero. 10: positive zero-crossing 11: negative zero-crossing: both positive and negative zero-crossing (default) 11: no zero-crossing output									
		These bits configure the L line and N line power difference threshold in anti-tampering mode.										
			Pthresh	Pthresh	Pthresh	Pthresh0	Threshold					
			3	2	0	0	12.5%					
			0	0	0	1	6.25%					
			0	0	1	0	3.125% (default)					
			0	0	1	1	1.5625%					
			0	1	0	0	1%					
			0	1	0	1	2%					
3 - 0	Pthresh[3:0]		0	1	1	0	3%					
			0	1	1	1	4%					
			1	0	0	0	5%					
			1	0	0	1	6%					
			1	0	1	0	7%					
			1	0	1	1	8%					
			1	1	0	0	9%					
			1	1	0	1	10%					
			1	1	1	0	11%					
			1	1	1	1	12%					

CS1 Checksum 1

Address: 2CH Type: Read/Write Default Value: 0000H 15 14 13 12 11 10 9 8 CS1_15 CS1_14 CS1_13 CS1_12 CS1_11 CS1_10 CS1_9 CS1_8 7 2 0 6 5 4 3 1 CS1_1 CS1_7 CS1_6 CS1_5 CS1_4 CS1_3 CS1_2 CS1_0

Bit	Name		Desci	ription							
			The CS1 register should be written after the 21H-2BH registers are written. Suppose the high byte and the low byte of the 21H-2BH registers are shown in below table.								
			Register Address	High Byte	Low Byte						
			21H	H ₂₁	L ₂₁						
			22H	H ₂₂	L ₂₂						
			23H	H ₂₃	L ₂₃						
			24H	H ₂₄	L ₂₄						
			25H	H ₂₅	L ₂₅						
			26H	H ₂₆	L ₂₆						
			27H	H ₂₇	L ₂₇						
			28H	H ₂₈	L ₂₈						
15 - 0	CS1[15:0]		29H	H ₂₉	L ₂₉						
			2AH	H _{2A}	L _{2A}						
			2BH	H _{2B}	L _{2B}						
		The calculation of the CS1 re The low byte of 2CH register The high byte of 2CH registe L _{2B} A part of registers are not use The M90E25 calculates CS1 is different when CalStart=87 pins are asserted. Note: The readout value of what is written.	is: L _{2C} =MOD(H ₂₁ +H ₂₂ r is: H _{2C} =H ₂₁ XOR H ₂ ed. These registers can regularly. If the value of 65H, the CalErr[1:0] bits	be dealed of the CS1 resistance.	OR H_{2B} XOF as 0000H in 0 egister and th s, 01H) are so	CS calculation. e calculation by the tand the WarnOut	e M90E25 ut and IRQ				

5.3.2 **MEASUREMENT CALIBRATION REGISTER**

AdjStart Measurement Calibration Start Command

Address: 30H Type: Read/W Default Value:	/rite										
15	14	13	12	11	10	9	8				
AdjStart1	5 AdjStart	14 AdjStart13	AdjStart12	AdjStart11	AdjStart10	AdjStart9	AdjStart8				
7	6	5	5 4 3 2 1								
AdjStart7	' AdjStart	AdjStart6 AdjStart5 AdjStart4 AdjStart3 AdjStart2 AdjStart1									
Bit	Name			Descri	ption						
15 - 0	AdjStart[15:0]	6886H: Power-on v 5678H: Measuremen 3AH resume ness of diagr report any into 8765H: Check the comeasurement	Description easurement Calibration Start Command 886H: Power-on value. No measurement. 878H: Measurement calibration startup command. After 5678H is written to this register, registers 31H 3AH resume to their power-on values. The M90E25 starts to measure regardless of the correct ness of diagnosis. The AdjErr[1:0] bits (SysStatus, 01H) are not set and the IRQ pin does no report any interrupt. 765H: Check the correctness of the 31H-3AH registers. If correct, normal measurement. If not correct measurement function is disabled, the AdjErr[1:0] bits (SysStatus, 01H) are set and the IRQ pin reports interrupt.								

Ugain Voltage rms Gain

Address: 311 Type: Read/ Default Value	Vrite						_	
15	14	13	12	11	10	9	8	
Ugain1	5 Ugain1	4 Ugain13	Ugain12	Ugain11	Ugain10	Ugain9	Ugain8	
7	6	5	4	3	2	1	0	
Ugain	7 Ugain6	3 Ugain5	Ugain4	Ugain3	Ugain2	Ugain1	Ugain0	
Bit	Name			Descri	ption			
15 - 0	Ugain[15:0]		Voltage rms Gain. For details, please refer to application note 46101. Note: the Ugain15 bit should only be '0'					

IgainL L Line Current rms Gain

Address: 32H Type: Read/W Default Value:	/rite							
15	14	13	12	11	10	9	8	
IgainL15	lgainL1	4 IgainL13	lgainL12	lgainL11	lgainL10	IgainL9	IgainL8	
7	6	5	4	3	2	1	0	
IgainL7	lgainL6	6 IgainL5	IgainL4	IgainL3	lgainL2	lgainL1	lgainL0	
							<u>.</u>	
Bit	Name			Descri	ption			
15 - 0	IgainL[15:0] L Line Current rms Gain, For details, please refer to application note 46101.							

IgainN N Line Current rms Gain

Address: 33H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
IgainN15	lgainN1	4 IgainN13	IgainN12	IgainN11	IgainN10	IgainN9	IgainN8			
7	6	5	4	3	2	1	0			
IgainN7	lgainN6	6 IgainN5	IgainN4	lgainN3	lgainN2	lgainN1	IgainN0			
Bit	Name	Description								
15 - 0	IgainN[15:0]	N Line Current rms	Line Current rms Gain. For details, please refer to application note 46101.							

Uoffset Voltage Offset

Address: 34H Type: Read/W Default Value:	/rite)H									
15		14		13	12	11	10	9	8		
Uoffset15	5	Uoffset1	4	Uoffset13	Uoffset12	Uoffset11	Uoffset10	Uoffset9	Uoffset8		
7		6		5	4	3	2	1	0		
Uoffset7	7 Uoffset6		6	Uoffset5	Uoffset4	Uoffset3	Uoffset2	Uoffset1	Uoffset0		
Bit	ı	Name		Description							
15 - 0	Uoff	set[15:0]	Volta	oltage offset. For calculation method, please refer to application note 46101.							

IoffsetL L Line Current Offset

Address: 35H Type: Read/W Default Value:	/rite								
15	14	13	12	11	10	9	8		
loffsetL18	5 loffsetL1	IoffsetL14 IoffsetL13 IoffsetL12 IoffsetL11 IoffsetL10 IoffsetL9				loffsetL8			
7	6	5	4	3	2	1	0		
loffsetL7	loffsetL	6 loffsetL5	loffsetL4	loffsetL3	loffsetL2	loffsetL1	loffsetL0		
Bit	Name	Description							
15 - 0	loffsetL[15:0]	15:0] L line current offset. For calculation method, please refer to application note 46101.							

IoffsetN N Line Current Offset

Address: 36H Type: Read/W Default Value:	/rite								
15	14	13	12	11	10	9	8		
IoffsetN18	5 loffsetN1	ffsetN14 loffsetN13 loffsetN12 loffsetN11 loffsetN10 loffsetN					IoffsetN8		
7	6	5	4	3	2	1	0		
loffsetN7	loffsetN	6 IoffsetN5	IoffsetN4	IoffsetN3	loffsetN2	loffsetN1	loffsetN0		
Bit	Name	N line ourrent effect	Description N line current offset. For calculation method, please refer to application note 46101.						
15 - 0	ionseni[15:0]	in line current offset.	For calculation i	memou, piease r	eier to applicatio	n note 46101.			

PoffsetL L Line Active Power Offset

Address: 37H Type: Read/W Default Value:	/rite								
15	14	13	12	11	10	9	8		
PoffsetL1	5 PoffsetL	setL14 PoffsetL13 PoffsetL12 PoffsetL11 Poffset				PoffsetL9	PoffsetL8		
7	6	5	4	3	2	1	0		
PoffsetL7	7 PoffsetL	.6 PoffsetL5	PoffsetL4	PoffsetL3	PoffsetL2	PoffsetL1	PoffsetL0		
<u> </u>									
Bit	Name	Description							
15 - 0	PoffsetL[15:0]		line active power offset. omplement, MSB is the sign bit. For calculation method, please refer to application note 46101.						

PoffsetN N Line Active Power Offset

Address: 39F Type: Read/V Default Value	Vrite							
15	14	13	12	11	10	9	8	
PoffsetN ²	15 PoffsetN	14 PoffsetN13	PoffsetN12	PoffsetN11	PoffsetN10	PoffsetN9	PoffsetN8	
7	6	5	4	3	2	1	0	
PoffsetN	7 PoffsetN	l6 PoffsetN5	PoffsetN4	PoffsetN3	PoffsetN2	PoffsetN1	PoffsetN0	
Bit	Name	Description						
15 - 0	PoffsetN[15:0]	I line active power offset. Complement, MSB is the sign bit. For calculation method, please refer to application note 46101.						

CS2 Checksum 2

Address: 3BH Type: Read/Write Default Value: 000	00H						
15	14	13	12	11	10	9	8
CS2_15	CS2_14	CS2_13	CS2_12	CS2_11	CS2_10	CS2_9	CS2_8
7	6	5	4	3	2	1	0
CS2_7	CS2_6	CS2_5	CS2_4	CS2_3	CS2_2	CS2_1	CS2_0

Bit	Name	Description							
		The CS2 register should be the low byte of the 31H-3AH		-		n. Suppose the high byte ar			
			Register Address	High Byte	Low Byte				
			31H	H ₃₁	L ₃₁				
			32H	H ₃₂	L ₃₂				
			33H	H ₃₃	L ₃₃				
			34H	H ₃₄	L ₃₄				
			35H	H ₃₅	L ₃₅				
			36H	H ₃₆	L ₃₆				
			37H	H ₃₇	L ₃₇				
15 - 0	CS2[15:0]		38H	H ₃₈	L ₃₈				
			39H	H ₃₉	L ₃₉				
			3AH	H _{3A}	L _{3A}				
		The calculatiion of the CS2 r	egister is as follows:						
		The low byte of 3BH register is: L_{3B} =MOD(H_{31} + H_{32} ++ H_{3A} + L_{31} + L_{32} ++ L_{3A} , 2^8) The high byte of 3BH register is: H_{3B} = H_{31} XOR H_{32} XOR XOR H_{3A} XOR L_{31} XOR L_{32} XOR XOR L_{3A}							
		The M90E25 calculates CS2 regularly. If the value of the CS2 register and the calculation by the M90E25 is different when AdjStart=8765H, the AdjErr[1:0] bits (SysStatus, 01H) are set. Note: The readout value of the CS2 register is the calculation by the XXXXXX, which is different from what is written.							

5.4 ENERGY REGISTER

Theory of Energy Registers

The internal energy resolution is 0.01 pulse. Within 0.01 pulse, forward and reverse energy are counteracted. When energy exceeds 0.01 pulse, the respective forward/reserve energy is increased. The forward and reverse energy are not counteracted in absolute energy registers. Take the example of active energy, suppose:

T0: Forward energy is 12.34 pulses and reverse energy is 1.23 pulses;

From T0 to T1: 0.005 forward pulse appeared From T1 to T2: 0.004 reverse pulse appeared From T2 to T3: 0.003 reverse pulse appeared

	T0	T1	T2	Т3
Forward Active Pulse	12.34	12.345	12.341	12.34
Reserve Active Pulse	1.23	1.23	1.23	1.232
Absolute Active Pulse	13.57	13.575	13.579	13.582

When forward/reverse energy or absolute energy reaches 0.1 pulse, the respective register is updated. When forward/reverse energy or absolute energy reaches 1 pulse, the CF1 pins outputs pulse and the REVP/REVQ bits (EnStatus, 46H) are updated.

Absolute energy might be more than the sum of forward and reverse energies. If "consistency" is required between absolute energy and forward/reverse energy in system application, absolute energy can be obtained by calculating the readout of the forward and reverse energy registers.

APenergy Forward Active Energy

Т	ddress: 40H ype: Read/Cl efault Value:	lear							
	15	14		13	12	11	10	9	8
	APenergy1	15 APenerg	y14	APenergy13	APenergy12	APenergy11	APenergy10	APenergy9	APenergy8
	7	6		5	4	3	2	1	0
	APenergy	7 APener	gy6	APenergy5	APenergy4	APenergy3	APenergy2	APenergy1	APenergy0
	Bit	Name	ne Description						
	15 - 0	APen- ergy[15:0]						ulation will return to	

Downloaded from Arrow.com.

ANenergy Reverse Active Energy

7	Address: 41H Type: Read/Cl Default Value:								
	15	14	13	12	11	10	9	8	
	ANenergy1	15 ANenerg	y14 ANenergy13	ANenergy12	ANenergy11	ANenergy10	ANenergy9	ANenergy8	
	7 6		5	4	3	2	1	0	
	ANenergy7 ANenergy6		gy6 ANenergy5	ANenergy4	ANenergy3	ANenergy2	ANenergy1	ANenergy0	
	Bit	Name		Description					
		ANen-		leverse active energy, cleared after read. In ata format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. In ata format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. In a continuation of this register has achieved FFFFH, the continuation accumulation will return 1000H.					

ATenergy Absolute Active Energy

Address: 42H Type: Read/C Default Value:	lear						
15	14	13	12	11	10	9	8
ATenergy1	15 ATenergy	/14 ATenergy13	ATenergy12	ATenergy11	ATenergy10	ATenergy9	ATenergy8
7	6	5	4	3	2	1	0
ATenergy	7 ATenerg	y6 ATenergy5	ATenergy4	ATenergy3	ATenergy2	ATenergy1	ATenergy0
	I	1					
Bit	Bit Name Description						
15 - 0	ATen- ergy[15:0]	Absolute active energy, cleared after read. Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFH, the continuation accumulation will return t 0000H.					

EnStatus Metering Status

Address: 46H Type: Read Default Value	After Power On	ı: C800	0H							
15	14		13		12		11	10	9	8
-	Pnoloa	d	-		RevP	I	_line	-	-	-
7	6		5		4		3	2	1	0
_	-		-		-		-	-	LNMode1	LNMode0
Bit	Name						Descri	ption		
15	-	Rese	rved.					•		
14	Pnoload This bit indicates 0: not active no- 1: active no-load			o-load st		0E25 is in	active no-	-load status.		
13	- Rese		rved.							
12	RevP	This bit indicates to 0: active forward 1: active reverse						output). Infigured to be al	osolute energy.	
11	Lline	This t 0: N I 1: L li	ine	tes the c	urrent met	ering line i	n anti-tam	pering mode.		
10 - 2	-	Rese	rved.							
		These	e bits ind	icate the	configurat	ion of MM	D1 and M	MD0 pins. Their	relationship is as	follows:
	MMD MMD LNmo LNmo 1 0 d1 d0 L/N Metering Mode									
4 0			0	0	0	0			mode (larger pov	/er)
1 - 0	LNMode[1:0]		0	1	0	1	I ±NI m		le (fixed L line) for single-phase	three wire
			1	0	1	0		sy	/stem)	
			1	1	1	1	Flexi		specified by the lade, 2BH))	NSel bit

MEASUREMENT REGISTER 5.5

Irms L Line Current rms

Address: 48H Type: Read Default Value:		00H							
15		14		13	12	11	10	9	8
Irms15		Irms14	1	Irms13	Irms12	Irms11	Irms10	Irms9	Irms8
7	7 6			5	4	3	2	1	0
Irms7	Irms7 Irms6			Irms5	Irms4	Irms3	Irms2	Irms1	Irms0
Bit	Name					Descri	ption		
15 - 0	L line current rms. Data format is XX.XXX, which corresponds to 0 ~ 65.535A. Irms[15:0] For cases when the current exceeds 65.535A, it is suggested to be handled by MCU in applicat example, the register value can be calibrated to 1/2 of the actual value during calibration, then m by 2 in application.								

Urms Voltage rms

Address: 49H Type: Read Default Value:									
15	14	13	12	11	10	9	8		
Urms15	Urms1	4 Urms13	Urms12	Urms11	Urms10	Urms9	Urms8		
7	6	5	4	3	2	1	0		
Urms7	Urms6	Urms5	Urms4	Urms3	Urms2	Urms1	Urms0		
Bit	Name Description								
15 - 0	Urms[15:0]	Voltage rms. Data format is XXX.	·						

Pmean L Line Mean Active Power

Address: 4AH Type: Read Default Value:							
15	14	13	12	11	10	9	8
Pmean18	5 Pmean	14 Pmean13	Pmean12	Pmean11	Pmean10	Pmean9	Pmean8
7	6	5	4	3	2	1	0
Pmean7	Pmear	6 Pmean5	Pmean4	Pmean3	Pmean2	Pmean1	Pmean0
L							
		_					
Bit	Name			Descri	ption		

Freq Voltage Frequency

T	ddress: 4CH ype: Read efault Value:							
	15	14	13	12	11	10	9	8
	Freq15	Freq14	Freq13	Freq12	Freq11	Freq10	Freq9	Freq8
	7	6	5	4	3	2	1	0
	Freq7	Freq6	Freq5	Freq4	Freq3	Freq2	Freq1	Freq0
			T					
	Bit	Name			Descri	ption		
	15 - 0	Freq[15:0]	Voltage frequency. Data format is XX.X sponds to 50.00Hz.	(X. Frequency n	neasurement rar	nge is 45.00~65	.00Hz. For exan	nple, 1388H corre-

PowerF L Line Power Factor

Ty	ddress: 4DH /pe: Read efault Value:							
	15	14	13	12	11	10	9	8
	PowerF1	5 PowerF	14 PowerF13	PowerF12	PowerF11	PowerF10	PowerF9	PowerF8
	7	6	5	4	3	2	1	0
	PowerF7	PowerF	6 PowerF5	PowerF4	PowerF3	PowerF2	PowerF1	PowerF0
	Bit	Name			Descri	ption		
	Bit Name Description L line power factor. Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example 8H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.							

Pangle Phase Angle between Voltage and L Line Current

Address: 4EH Type: Read Default Value:									
15	14	13	12	11	10	9	8		
Pangle15	5 Pangle1	4 Pangle13	Pangle12	Pangle11	Pangle10	Pangle9	Pangle8		
7	6	5	4	3	2	1	0		
Pangle7	Pangle	6 Pangle5	Pangle4	Pangle3	Pangle2	Pangle1	Pangle0		
Bit	Name Description								
15 - 0	Pangle[15:0]		ne voltage current angle. ned, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.						

Smean L Line Mean Apparent Power

Address: 4FH Type: Read Default Value:								
15	14	13	12	11	10	9	8	
Smean18	5 Smean	14 Smean13	Smean12	Smean11	Smean10	Smean9	Smean8	
7	6	5	4	3	2	1	0	
Smean7	Smean	6 Smean5	Smean4	Smean3	Smean2	Smean1	Smean0	
Bit	Name	Name Description						
L line mean apparent power. Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. If current is specially handled by MCU, the power of the M90E25 and the actual power have the sammultiple relationship as the current.								

Irms2 N Line Current rms

Address: 68H Type: Read Default Value:								
15	14	13	12	11	10	9	8	
Irms2_15	5 Irms2_	14 Irms2_13	Irms2_12	Irms2_11	Irms2_10	Irms2_9	Irms2_8	
7	6	5	4	3	2	1	0	
Irms2_7	Irms2_	6 Irms2_5	Irms2_4	lrms2_3	Irms2_2	Irms2_1	Irms2_0	
Bit	Name			Descr	iption			
15 - 0	Irms2[15:0]	For cases when the	Pata format is XX.XXX, which corresponds to 65.535A. For cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For xample, the register value can be calibrated to 1/2 of the actual value during calibration, then multiplied					

Pmean2 N Line Mean Active Power

Address: 6AH Type: Read Default Value								
15	14		13	12	11	10	9	8
Pmean2_	15 Pmean2	2_14	Pmean2_13	Pmean2_12	Pmean2_11	Pmean2_10	Pmean2_9	Pmean2_8
7	7 6		5	4	3	2	1	0
Pmean2_	7 Pmean	2_6	Pmean2_5	Pmean2_4	Pmean2_3	Pmean2_2	Pmean2_1	Pmean2_0
Bit	Name				Descri	ption		
15 - 0	Pmean2[15:0] Con	line mean active power. Implement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kW. Current is specially handled by MCU, the power of the M90E25 and the actual power have the same altiple relationship as the current.					

PowerF2 N Line Power Factor

Address: 6DH Type: Read Default Value:							
15	14	13	12	11	10	9	8
PowerF2_	PowerF2_15 PowerF2_14 PowerF2_15 PowerF2_15 PowerF2_15 PowerF2_16 PowerF2_17 Power		PowerF2_12	PowerF2_11	PowerF2_10	PowerF2_9	PowerF2_8
7	7 6 5		4	3	2	1	0
PowerF2_	7 PowerF2	_6 PowerF2_5	PowerF2_4	PowerF2_3	PowerF2_2	PowerF2_1	PowerF2_0
Bit	Name			Descri	ption		
15 - 0	PowerF2[15:0]	line power factor. igned, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.					

Pangle2 Phase Angle between Voltage and N Line Current

Ту	dress: 6EH pe: Read fault Value:							
	15	14	13	12	11	10	9	8
	Pangle2_1	5 Pangle2_	_14 Pangle2_13	Pangle2_12	Pangle2_11	Pangle2_10	Pangle2_9	Pangle2_8
	7	6	5	4	3	2	1	0
	Pangle2_	7 Pangle2	_6 Pangle2_5	Pangle2_4	Pangle2_3	Pangle2_2	Pangle2_1	Pangle2_0
	Bit Name Description							
	15 - 0	Pangle2[15:0]	N line voltage current angle Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.					

Smean2 N Line Mean Apparent Power

Ty	ddress: 6FH /pe: Read efault Value:							
	15	14	13	12	11	10	9	8
_	Smean2_15 Smean2_		_14 Smean2_13	Smean2_12	Smean2_11	Smean2_10	Smean2_9	Smean2_8
	7 6		5	4	3	2	1	0
	Smean2_	7 Smean2	_6 Smean2_5	Smean2_4	Smean2_3	Smean2_2	Smean2_1	Smean2_0
	Bit	Name			Descri	ption		
	15 - 0	N line mean apparent power Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. If current is specially handled by MCU, the power of M90E25 and the actual power have the same multiple relationship as the current.						

6 ELECTRICAL SPECIFICATION

6.1 ELECTRICAL SPECIFICATION

Parameters and Description	Min.	Typical	Max.	Unit	Test Conditions and Comments
		Acc	uracy		
DC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V \pm 0.3V, 100Hz, I=5A, V=220V, L line shunt resistor 150 $\mu\Omega$, N line CT 1000:1, sampling resistor 4.8 Ω
AC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V superimposes 400mVrms, 100Hz Sinusoidal signal, I=5A, V=220V, L line shunt resistor 150 $\mu\Omega$, N line CT 1000:1, sampling resistor 4.8 Ω
7.6 Femore capping responses reade (Femore				70	L line current gain is '24'; N line current gain
Active Energy Error (Dynamic Range 5000:1)			±0.1	%	is '1'
	С	hannel Ch	aracteristi	cs	
Sampling Frequency		8		kHz	
L Line Current Channel Equivalent Input Noise			19.1	nV/√Hz	Single side band noise (measured at 50Hz, and PGA gain is '24')
N Line Current Channel Equivalent Input Noise			458.4	nV/√Hz	Single side band noise (measured at 50Hz, and PGA gain is '1')
Voltage Channel Equivalent Input Noise			458.4	nV/√Hz	Single side band noise (measured at 50Hz, and PGA gain is '1')
Total Harmonic Distortion for Each Channel	80			dB	25°C, PGA gain is '1', 500mVrms input
Active Energy Metering Bandwidth		4		kHz	
Irms and Vrms Measurement Bandwidth		4		kHz	
Measurement Error			±0.5	%	
		Analo	g Input		
	5μ		25m		PGA gain is '24'
	7.5µ		37.5m		PGA gain is '16'
	15μ		75m		PGA gain is '8'
	30μ		150m		PGA gain is '4'
L Line Current Channel Differential Input	120μ		600m	Vrms	PGA gain is '1'
	30μ		150m		PGA gain is '4'
	60µ		300m		PGA gain is '2'
N Line Current Channel Differential Input	120μ		600m	Vrms	PGA gain is '1'
Voltage Channel Differential Input	120μ		600m	Vrms	PGA gain is '1'
L Line Current Channel Input Impedance		1		ΚΩ	
N Line Current Channel Input Impedance		50		KΩ	
Voltage Channel Input Impedance		50		KΩ	
L Line Current Channel DC Offset			10	mV	PGA gain is '24'
N Line Current Channel DC Offset			10	mV	PGA gain is '1'
Voltage Channel DC Offset			10	mV	PGA gain is '1'
		Refe	rence		
On-Chip Reference	1.398	1.417	1.440	V	Reference voltage test mode
Reference Voltage Temperature Coefficient		±15	±40	ppm/°C	
		CI	ock		
Crystal or External Clock		8.192		MHz	The Accuracy of crystal or external clock is $\pm100~\rm{ppm}$

		SPII	nterface		
SPI Interface Bit Rate	200		160k	bps	
		Puls	e Width		
CF1 Pulse Width		80		ms	If T \geq 160 ms, width=80ms; if T<160 ms, width = 0.5T. Refer to Section 6.6
		i	SD		
Machine Model (MM)	400			V	JESD22-A115
Charged Device Model (CDM)	1000			٧	JESD22-C101
Human Body Model (HBM)	4000			V	JESD22-A114
Latch Up			±100	mA	JESD78A
Latch Up			4.95	٧	JESD78A
		Operating	g Conditions		
AVDD, Analog Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
DVDD, Digital Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
I _{AVDD} , Analog Current		3.75		mA	L line/ N line current channel and voltage channel are open
I _{DVDD} , Digital Current		2.75		mA	VDD=3.3V
		DC Cha	racteristics		
Digital Input High Level (all digital pins except OSCI)	2.0		VDD+2.6	V	VDD=3.3V±10%,
Digital Input High Level (OSCI)	2.0		VDD+0.3	٧	VDD=3.3V±10%
Digital Input Low Level			0.8	٧	VDD=3.3V±10%
Digital Input Leakage Current			±1	μΑ	VDD=3.6V, VI=VDD or GND
Digital Output Low Level (CF1)			0.4	٧	VDD=3.3V, I _{OL} =10mA
Digital Output Low Level (IRQ, WarnOut, ZX, SDO)			0.4	V	VDD=3.3V, I _{OL} =5mA
Digital Output High Level (CF1)	2.4			٧	VDD=3.3V, I _{OH} =-10mA
Digital Output High Level (IRQ, WarnOut, ZX, SDO)	2.4			V	VDD=3.3V, I _{OH} =-5mA
Digital Output Low Level (OSCO)			0.4	٧	VDD=3.3V, I _{OL} =1mA
Digital Output High Level (OSCO)	2.4			٧	VDD=3.3V, I _{OH} =-1mA

6.2 SPI INTERFACE TIMING

The SPI interface timing is as shown in Figure-7, Figure-8 and Table-10.

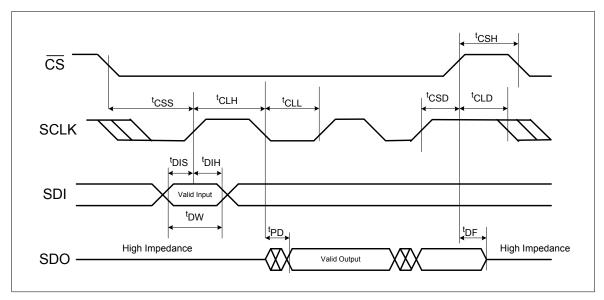


Figure-7 4-Wire SPI Timing Diagram

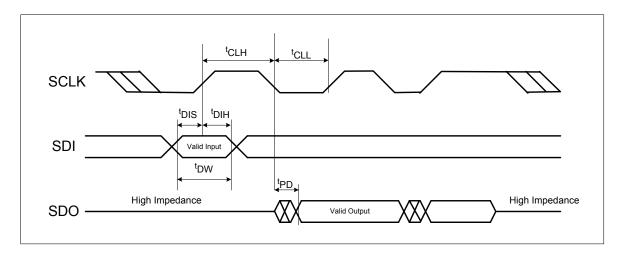


Figure-8 3-Wire SPI Timing Diagram

Table-10 SPI Timing Specification

Symbol	Description	Min.	Typical	Max.	Unit
t _{CSH} note 1	Minimum CS High Level Time	30T ^{note 2} +10			ns
t _{CSS} note 1	CS Setup Time	3T+10			ns
t _{CSD} note 1	CS Hold Time	30T+10			ns
t _{CLD} note 1	Clock Disable Time	1T			ns
t _{CLH}	Clock High Level Time	30T+10			ns
t _{CLL}	Clock Low Level Time	16T+10			ns
t _{DIS}	Data Setup Time	3T+10			ns
t _{DIH}	Data Hold Time	22T+10			ns
t _{DW}	Minimum Data Width	30T+10			ns
t _{PD}	Output Delay	14T		15T+20	ns
note 1	Output Disable Time			16T+20	ns

Note:

Not applicable for three-wire SPI.
 T means SCLK cycle. T=122ns. (Typical value for four-wire SPI)

6.3 POWER ON RESET TIMING

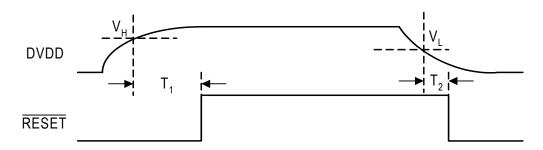


Figure-9 Power On Reset Timing Diagram

Table-11 Power On Reset Specification

Symbol	Description	Min.	Typical	Max.	Unit
V _H	Power On Trigger Voltage	2.47	2.6	2.73	V
V_{L}	Power Off Trigger Voltage	2.185	2.3	2.415	V
V _H -V _L	Hysteretic Voltage Difference	0.285	0.3	0.315	V
T ₁	Delay Time After Power On	5			ms
T ₂	Delay Time After Power Off	10			μs

6.4 ZERO-CROSSING TIMING

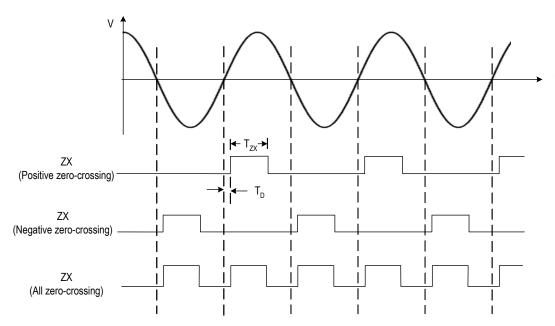


Figure-10 Zero-Crossing Timing Diagram

Table-12 Zero-Crossing Specification

Symbol	Description	Min.	Typical	Max.	Unit
T _{ZX}	High Level Width		5		ms
T _D	Delay Time			0.5	ms

6.5 VOLTAGE SAG TIMING

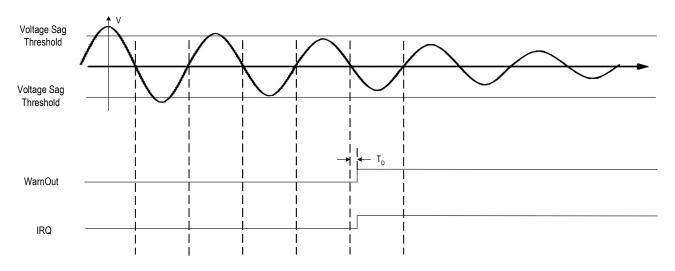


Figure-11 Voltage Sag Timing Diagram

Table-13 Voltage Sag Specification

Symbol	Description	Min.	Typical	Max.	Unit
T _D	Delay Time			0.5	ms

6.6 PULSE OUTPUT

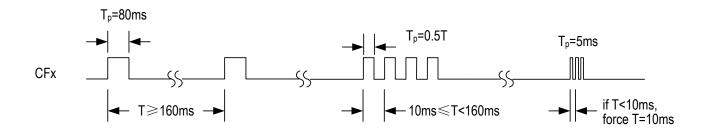
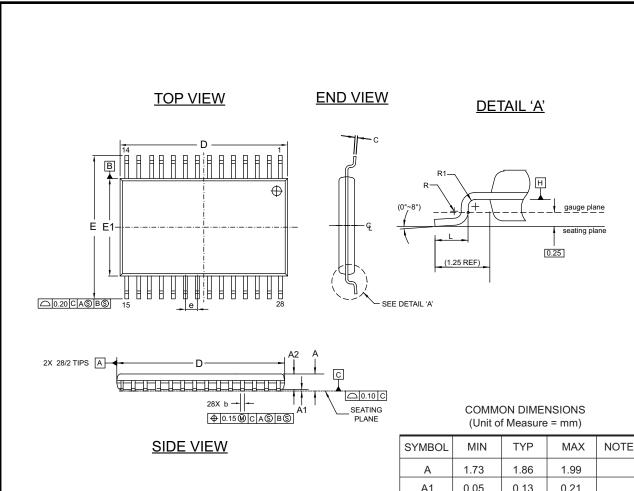


Figure-12 Output Pulse Width

6.7 ABSOLUTE MAXIMUM RATING

Parameter	Maximum Limit		
Relative Voltage Between AVDD and AGND	-0.3V~3.7V		
Relative Voltage Between DVDD and DGND	-0.3V~3.7V		
Analog Input Voltage (I1P, I1N, I2P, I2N, VP, VN)	-1V~VDD		
Digital Input Voltage	-0.3V~VDD+2.6V		
Operating Temperature Range	-40~85 °C		
Maximum Junction Temperature	150 °C		


Package Type	Thermal Resistance θ_{JA}	Unit	Condition
Green SSOP28	63.2	°C/W	No Airflow

ORDERING INFORMATION

Atmel Ordering Code	Package	Carrier	Temperature Range
ATM90E25-YU-R	SSOP28	Tape&Reel	Industry (-40°C to +85°C)
ATM90E25-YU-B	SSOP28	Tube	Industry (-40°C to +85°C)

PACKAGE DIMENSIONS

NOTE:

- 1. Refer to JEDEC drawing MO-150, Variation AH.
- 'D' and 'E1" dimensions do not include mold flash or protrusions, but do include mold mismatch and are measured at datum plane 'H'. Mold flash or protrusion shall not exceed 0.20mm per side.
- Dimension 'b' does not include dambar protrustion/ intrusion. Allowable dambar protrusion shall be 0.13mm total in excess of b dimesnion at maximum material condition. Dambar intrusion shall not reduce dimension b by more than 0.07mm at least material condition.

SYMBOL	MIN	TYP	MAX	NOTE
Α	1.73	1.86	1.99	
A1	0.05	0.13	0.21	
A2	1.68	1.73	1.78	
b	0.25	-	0.38	3
С	0.13	-	0.20	
D	10.07	10.20	10.33	2
E	7.65	7.80	7.90	
E1	5.20	5.30	5.38	2
е	0.65 BSC			
L	0.55	0.75	0.95	
R	0.09	-	-	
R1	0.09	-	-	

2/25/14

/	Щ.	~	. ~ !
	U	ш	ıeı

Package Drawing Contact: packagedrawings@atmel.com

TITLE	
28Y, 28-lead 5.3 mm Body Width, 0.65mm pitch, lead length, Plastic Shrink Small Outline Package	

GPC	DRAWING NO.	REV.
TBF	28Y	В

REVISION HISTORY

Doc. Rev.	Date	Comments
46001A	04/18/2014	Initial document release in Atmel.

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2014 Atmel Corporation. All rights reserved. / Rev.: Atmel-46001A-SE-M90E25-Datasheet_041814.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.