

APT11F80B APT11F80S

800V, 12A, 0.9Ω Max t_{rr} ≤210ns

N-Channel FREDFET

POWER MOS 8[®] is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced trr, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of Crss/Ciss result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant *J*

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- · Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I	Continuous Drain Current @ T _C = 25°C	12	
'D	Continuous Drain Current @ T _C = 100°C	8	A
I _{DM}	Pulsed Drain Current ^①	46	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy [©]	524	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	6	А

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit	
P _D	Total Power Dissipation @ T_{C} = 25°C			337	W	
R _{θJC}	Junction to Case Thermal Resistance			0.37	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
TL	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.22		oz	
, T			6.2		g	
Torque	Mounting Torque (TO-247 Package), 6-32 or M3 screw			10	in∙lbf	
				1.1	N∙m	

Microsemi Website - http://www.microsemi.com

Static Char	acteristics T _J = 25	= 25°C unless otherwise specified			APT11F80B_S		
Symbol	Parameter	Test Conditions		Min	Тур	Мах	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		800			V
$\Delta V_{BR(DSS)} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.87		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 6A			0.65	0.9	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	- V _{GS} = V _{DS} , I _D = 1mA		2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zana Osta Maltana Dasia Oranast	V _{DS} = 800V	T _J = 25°C			250	
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	T _J = 125°C			1000	μA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$				±100	nA

Dynamic Characteristics

T_J = 25°C unless otherwise specified

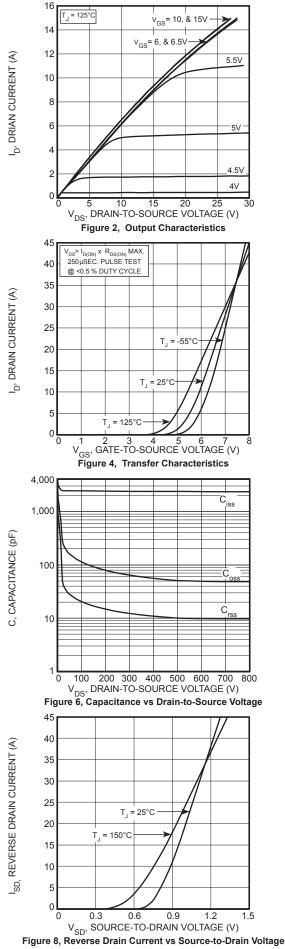
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 6A$		11		S
C _{iss}	Input Capacitance			2471		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		42		
C _{oss}	Output Capacitance	1 111112		246		
C _{o(cr)} ④	Effective Output Capacitance, Charge Related			116		pF
C _{o(er)} (5)	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$		58		
Q _g	Total Gate Charge			80		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 6A,$ $V_{DS} = 400V$		13		nC
Q _{gd}	Gate-Drain Charge	$v_{\rm DS} = 400v$		41		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		14		
t _r	Current Rise Time	V _{DD} = 400V, I _D = 6A		20		ns
t _{d(off)}	Turn-Off Delay Time	R _G = 4.7Ω [®] , V _{GG} = 15V		61		115
t _f	Current Fall Time			18		

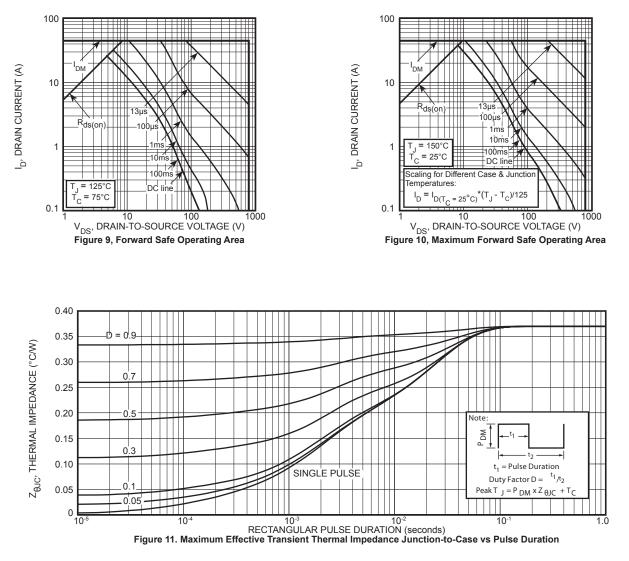
Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n			12	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)			46	
V _{SD}	Diode Forward Voltage	$I_{SD} = 6A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.2	V
t _{rr}		$T_{J} = 25^{\circ}C$		181	210	ns
'n	Reverse Recovery Time	T _J = 125°C		300	360	113
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 6A^{(3)}$ $T_J = 25^{\circ}C$		0.71		
Grr		$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$		1.61	μ	μC
	Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$		8.3		_
'rrm		T _J = 125°C		11.9		A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 6A, di/dt \le 1000A/\mu s, V_{DD} = 400V,$ $T_{J} = 125^{\circ}C$			25	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.

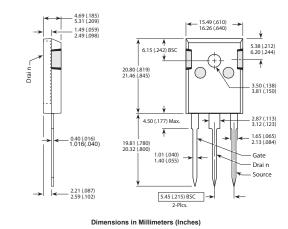
(2) Starting at $T_J = 25^{\circ}C$, L = 29.1mH, $R_G = 25\Omega$, $I_{AS} = 6A$.

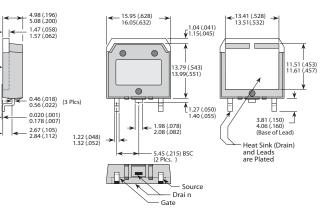

(3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.


(4) C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
(5) C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -3.43E-8/V_{DS}² + 1.44E-8/V_{DS} + 5.38E-11.

6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.





Drai n (Heat Sink)

TO-247 (B) Package Outline (ef) SAC: Tin, Silver, Copper

D³PAK Package Outline © 3 100% Sn Plated

Dimensions in Millimeters (Inches)

8-2011