

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/557

DESCRIPTION

This family of switching transistors is military qualified up to the JANTXV level for highreliability applications. The 2N6798U part number is also qualified to the JANS level. These devices are also available in a TO-205AF (TO-39) package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 2N6796, 2N6798, 2N6800 and 2N6802 number series.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/557.
 *JANS qualification is available on 2N6798U only. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Compact surface mount design enables mounting in crowded areas.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise stated

Parameters / Test Con	ditions	Symbol	Value	Unit
Operating & Storage Junction Tempe	erature Range	T _J & T _{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Cas	e (see <u>Figure 1</u>)	R _{eJC}	5.0	°C/W
Total Power Dissipation	@ $T_A = +25 °C$ @ $T_C = +25 °C^{(1)}$	Ρ _T	0.8 25	W
Drain-Source Voltage, dc	2N6796U 2N6798U 2N6800U 2N6802U	V_{DS}	100 200 400 500	V
Gate-Source Voltage, dc		V _{GS}	± 20	V
Drain Current, dc @ T_c = +25 °C ⁽²⁾	2N6796U 2N6798U 2N6800U 2N6802U	I _{D1}	8.0 5.5 3.0 2.5	A
Drain Current, dc @ T_C = +100 °C ⁽²⁾	2N6796U 2N6798U 2N6800U 2N6802U	I _{D2}	5.0 3.5 2.0 1.5	A
Off-State Current (Peak Total Value)	 ⁽³⁾ 2N6796U 2N6798U 2N6800U 2N6802U 	І _{DM}	32 22 14 11	A (pk)
Source Current	2N6796U 2N6798U 2N6800U 2N6802U	Is	8.0 5.5 3.0 2.5	A

See notes on next page.

Downloaded from Arrow.com.

Qualified Levels:

JAN, JANTX, JANTXV

and JANS*

U-18 LCC Package

Also available in:

TO-205AF (TO-39) package (Leaded Top Hat) 2N6796, 2N6798, 2N6800 & 2N6802

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

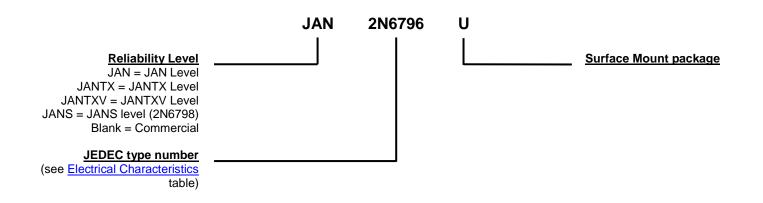
MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

- Notes: 1. Derate linearly 0.2 W/°C for $T_C > +25$ °C.
 - 2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.


$$I_{D} = \sqrt{\frac{T_{J}(max) - T_{C}}{R_{\theta JC} \ x \ R_{DS}(on) \ @ T_{J}(max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 1.

MECHANICAL and PACKAGING

- CASE: Ceramic LCC-18 with kovar gold plated lid.
- TERMINALS: Gold plating over nickel.
- MARKING: Manufacturer's ID, part number, date code, ESD symbol at Pin 1 location.
- TAPE & REEL option: Standard per EIA-481-D. Consult factory for quantities.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.			
I _F	Forward current			
R _G	Gate drive impedance			
V _{DD}	Drain supply voltage			
V _{DS}	Drain source voltage, dc			
V _{GS}	Gate source voltage, dc			

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	2N6796U 2N6798U 2N6800U 2N6802U	V _{(BR)DSS}	100 200 400 500		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{ mA}$ $V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{ mA}$, $T_J = +125^{\circ}\text{C}$ $V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{ mA}$, $T_J = -55^{\circ}\text{C}$	21100020	V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_J = +125^{\circ}\text{C}$		I _{GSS1} I _{GSS2}		±100 ±200	nA
	2N6796U 2N6798U 2N6800U 2N6802U	I _{DSS1}		25	μΑ
$\begin{array}{l} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 80 \text{ V}, \text{T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 160 \text{ V}, \text{T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 320 \text{ V}, \text{T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 400 \text{ V}, \text{T}_{\text{J}} = +125 ^{\circ}\text{C} \end{array}$	2N6796U 2N6798U 2N6800U 2N6802U	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 1.5 \text{ A pulsed}$	2N6796U 2N6798U 2N6800U 2N6802U	r _{DS(on)1}		0.18 0.40 1.00 1.50	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A pulsed}$	2N6796U 2N6798U 2N6800U 2N6802U	r _{DS(on)2}		0.195 0.420 1.100 1.600	Ω
Static Drain-Source On-State Resistance $T_J = +125$ °C $V_{GS} = 10$ V, $I_D = 5.0$ A pulsed $V_{GS} = 10$ V, $I_D = 3.5$ A pulsed $V_{GS} = 10$ V, $I_D = 2.0$ A pulsed $V_{GS} = 10$ V, $I_D = 1.5$ A pulsed	2N6796U 2N6798U 2N6800U 2N6802U	۲ _{DS(on)3}		0.35 0.75 2.40 3.50	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 8.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 5.5 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 3.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 2.5 \text{ A pulsed}$	2N6796U 2N6798U 2N6800U 2N6802U	V _{SD}		1.5 1.4 1.4 1.4	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
$\begin{array}{l} \text{On-State Gate Charge} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 8.0 \text{ A}, \text{ V}_{\text{DS}} = 50 \text{ V} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 5.5 \text{ A}, \text{ V}_{\text{DS}} = 50 \text{ V} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 3.0 \text{ A}, \text{ V}_{\text{DS}} = 50 \text{ V} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 2.5 \text{ A}, \text{ V}_{\text{DS}} = 50 \text{ V} \end{array}$	2N6796U 2N6798U 2N6800U 2N6802U	Q _{g(on)}		28.51 42.07 34.75 33.00	nC
	2N6796U 2N6798U 2N6800U 2N6802U	Q _{gs}		6.34 5.29 5.75 4.46	nC
	2N6796U 2N6798U 2N6800U 2N6802U	Q _{gd}		16.59 28.11 16.59 28.11	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
$\begin{array}{l} \mbox{Turn-on delay time} \\ I_D = 8.0 \mbox{ A, } V_{GS} = +10 \mbox{ V, } R_G = 7.5 \ \Omega, \ V_{DD} = 30 \ V \\ I_D = 5.5 \ A, \ V_{GS} = +10 \ V, \ R_G = 7.5 \ \Omega, \ V_{DD} = 77 \ V \\ I_D = 3.0 \ A, \ V_{GS} = +10 \ V, \ R_G = 7.5 \ \Omega, \ V_{DD} = 176 \ V \\ I_D = 2.5 \ A, \ V_{GS} = +10 \ V, \ R_G = 7.5 \ \Omega, \ V_{DD} = 225 \ V \end{array}$	2N6796U 2N6798U 2N6800U 2N6802U	t _{d(on)}		30	ns
	2N6796U 2N6798U 2N6800U 2N6802U	tr		75 50 35 30	ns
$\begin{array}{l} \mbox{Turn-off delay time} \\ I_D = 8.0 \mbox{ A}, V_{GS} = +10 \mbox{ V}, R_G = 7.5 \ \Omega, V_{DD} = 30 \mbox{ V} \\ I_D = 5.5 \mbox{ A}, V_{GS} = +10 \mbox{ V}, R_G = 7.5 \ \Omega, V_{DD} = 77 \mbox{ V} \\ I_D = 3.0 \mbox{ A}, V_{GS} = +10 \mbox{ V}, R_G = 7.5 \ \Omega, V_{DD} = 176 \mbox{ V} \\ I_D = 2.5 \mbox{ A}, V_{GS} = +10 \mbox{ V}, R_G = 7.5 \ \Omega, V_{DD} = 225 \mbox{ V} \end{array}$	2N6796U 2N6798U 2N6800U 2N6802U	t _{d(off)}		40 50 55 55	ns
	2N6796U 2N6798U 2N6800U 2N6802U	t _f		45 40 35 30	ns
Diode Reverse Recovery Time di/dt $\leq 100 \text{ A/}\mu\text{s}, \text{ V}_{\text{DD}} \leq 50 \text{ V}, \text{ I}_{\text{F}} = 8.0 \text{ A}$ di/dt $\leq 100 \text{ A/}\mu\text{s}, \text{ V}_{\text{DD}} \leq 50 \text{ V}, \text{ I}_{\text{F}} = 5.5 \text{ A}$ di/dt $\leq 100 \text{ A/}\mu\text{s}, \text{ V}_{\text{DD}} \leq 50 \text{ V}, \text{ I}_{\text{F}} = 3.0 \text{ A}$ di/dt $\leq 100 \text{ A/}\mu\text{s}, \text{ V}_{\text{DD}} \leq 50 \text{ V}, \text{ I}_{\text{F}} = 2.5 \text{ A}$	2N6796U 2N6798U 2N6800U 2N6802U	t _{rr}		300 500 700 900	ns

GRAPHS

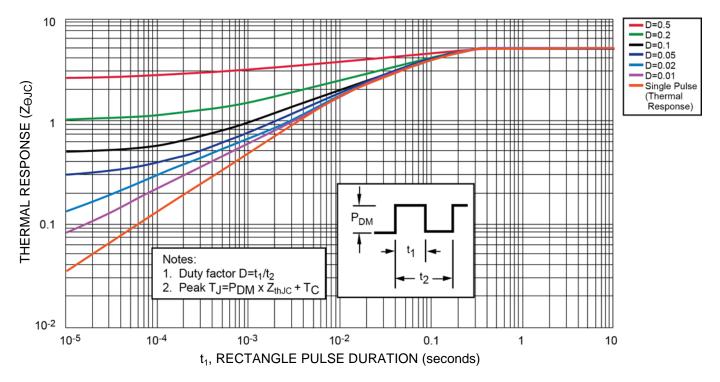
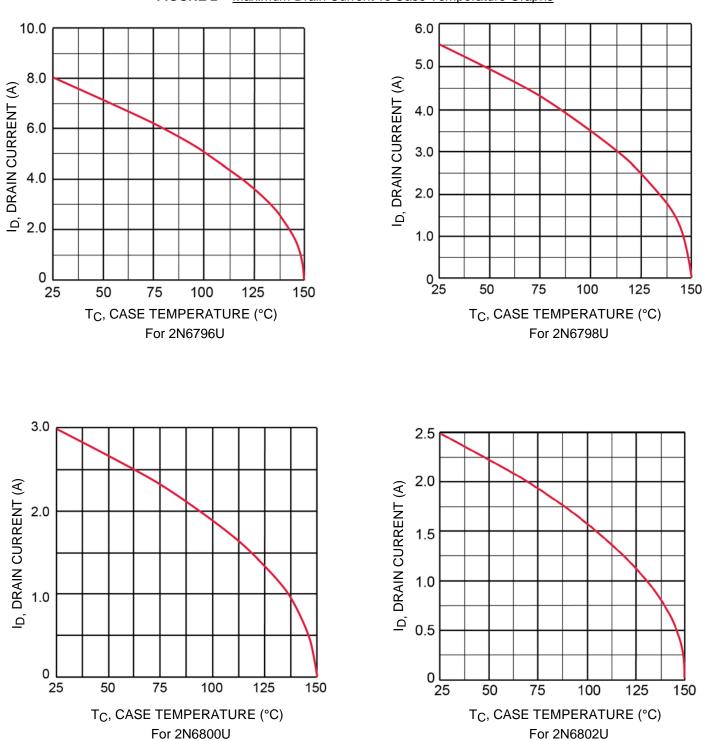
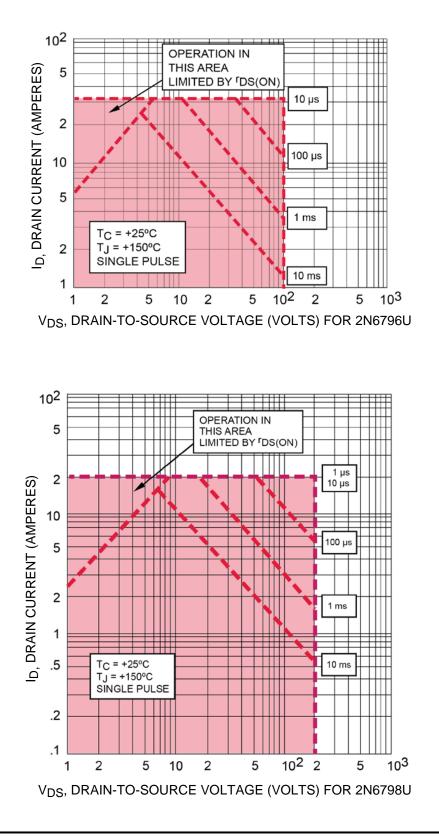


FIGURE 1 – Normalized Transient Thermal Impedance

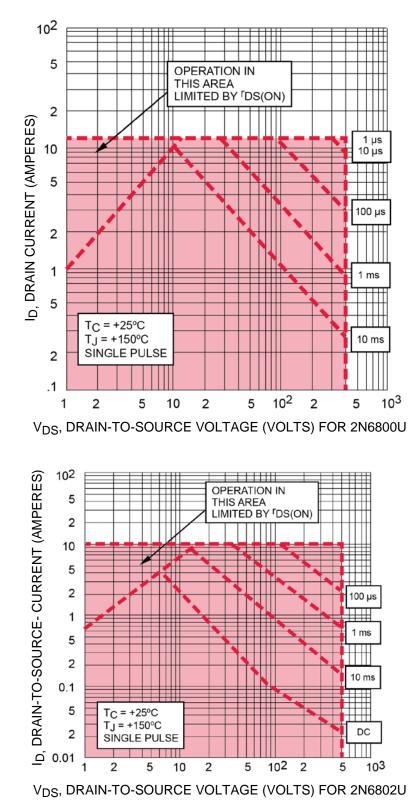
GRAPHS (continued)

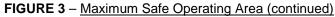



FIGURE 2 - Maximum Drain Current vs Case Temperature Graphs

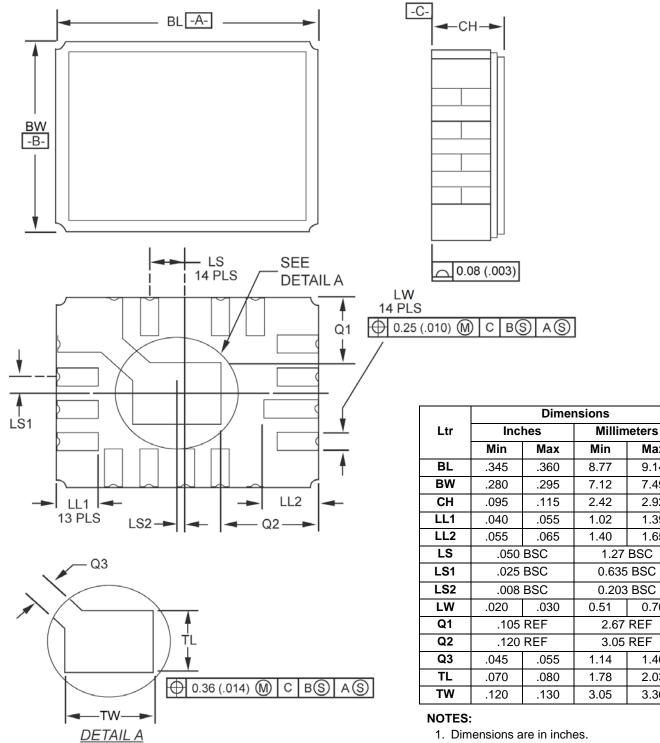
Downloaded from Arrow.com.

GRAPHS (continued)





T4-LDS-0047-1, Rev. 1 (121483)


GRAPHS (continued)

- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 4. Ceramic package only.

T4-LDS-0047-1, Rev. 1 (121483)

Max

9.14

7.49

2.92

1.39

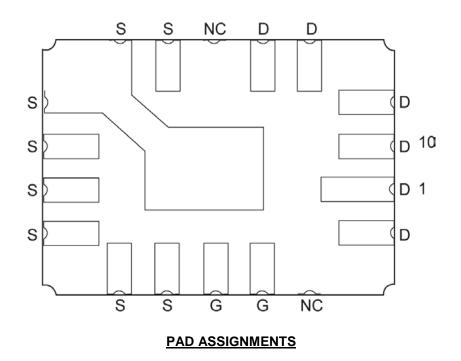
1.65

0.76

1.40

2.03

3.30


1.27 BSC

2.67 REF

3.05 REF

PAD LAYOUT

