		REVISIONS																		
LTR					[DESCF	RIPTIO	N					DA	TE (YI	R-MO-	DA)		APPR	OVED	
REV																				
SHEET	35	36	37	38	39	40														
REV																				
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATUS				RE\	/															
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A				PRE	PARE) BY														
					F	Phu H.	Nauve	n				I	DLA I		AND	MAR		E		
STAN		RD		CHE	CKED	BY	nguyo			-		CC	DLUM	BUS	, OHIO) 432	218-39	990		
MICRO	CIRC	CUIT										<u>mup.</u>	<u>// vv vv v</u>	v.iali	uanui	IIanu	me.u	<u>ia.iiii</u>		
DRA	WIN	G			ŀ	Phu H.	Nguye	n												
				APP	ROVE) BY														
THIS DRAWIN FOR US	IG IS A SE BY	VAILAI ALL	BLE		т	homoo	м⊔∽	ee		міс			лт г	רוטוכ		32-RI	T SP		√8	
	RTMEN		_	DRA	WING	APPR		DATE		RE	CON	FIGU	RABI	LE P	ROC	ESS	DR. N			
	IT OF [DEFEN	SE			45.5				СН	IP M	ODUL	E.				-, •	•		
				RFV	ISION	15-0 LEVFI	12-09			SI	ZE	CA	GE CC	DF						
AMS	SC N/A	L .				, _ L					Ą		67268	3		5	5962-	1422	9	
												SHEET		1	OF 4	40				

DSCC FORM 2233 APR 97

5962-E362-14

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	<u>Generic number</u>	Circuit function
01	ATF697FF	32-bit SPARC V8 reconfigurable processor

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

	Device class	Device requirements documentation							
	Q or V		Certification and	qualification to MIL-PRF-38535					
1.2.4	Case outline(s).	The case outline(s) are as d	he case outline(s) are as designated in MIL-STD-1835 and as follows:						
	Outline letter	Descriptive designator	Terminals	Package style					
	х	See Figure 1	352	Quad Flatpack unformed Leads					

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 2
DSCC FORM 2234			

1.3 Absolute maximum ratings. 1/			
Supply voltage range (PROC Vpp18, FPGA Vpp18, PROG		-0.3 V to 2.0 V	3/
Supply voltage range (PROC V _{CC33} , FPGA V _{CC33})		-0.3 V to 4.0 V	<u>4</u> /
All output voltages with respect to ground		0.3 V to 4.0 V	-
Maximum power dissipation (P _D)		4.5 W	
Processor power dissipation		1.2 W	
Reconfigurable unit power dissipation		3.3 W	_
Case temperature range, (T _c)		55°C to +125°	C
I hermal resistance, junction to case X.			0
Storage temperature range (1s)			C
Lead temperature (soldering 10sec) Case outline X		+175 C +300°C <u>6</u> /	
1.4 <u>Recommended operating conditions</u> . 2/ 7/ 8/:			
Supply voltage range (PROC Verse EPGA Verse PROC		1.65 \/ to 1.95	V 3/
Supply voltage range (PROC_VDD18, FFGA_VDD18, FROG_	_V DDPLL)	3.0 V to 3.6 V	v <u>5</u> / <u>4</u> /
Ambient temperature (T_{A})		-55°C to 125°C	<u></u>
IO Power Supply (PROC Vcc33, FPGA Vcc33)			
LVDS Reference Voltage (LVDS_REF_A, LVDS_REF_B).		1.25 V± 0.1 V	
IO Power Supply (PROC_VDD18, FPGA_VDD18, PROG_VDD1	PLL)	1.8 V ± 0.15 V	
1.5 Digital logic testing for device classes Q and V.			
Lead temperature (soldering 10sec) Case outline X		+300°C <u>6</u> /	
Fault coverage measurement (MIL-STD-883, method 5012	2):	_	
Processor		92 percent	
Reconfigurable unit		95 percent	<u>9</u> /
 <u>6</u>/ For Multilayer Quad Flat Package case, duration 10 second evice body and the same terminal shall not be resoldered. <u>7</u>/ When the device needs to be powered "on/off" while other "power on/off" sequences are: 	onds maximum at ed until 3 minutes er circuits in the ap	a distance of not less than a have elapsed; else, during oplication are still powered,	I.6mm from the reflow. the recommended
First power PROC_VCC33 (I/O) & FPGA_VCC3 Then power PROC_VDD18 (Core) & FPGA_VE	33 (I/O) DD18 (Core).		
First power PROC VDD18 (Core) & FPGA VD	D18 (Core).		
Then power PROC_VCC33 (I/O) & FPGA_VCC is also recommended to stop all activity during these pha	33 (I/O) ases as a bi-direct	ional could be in an undeter	mined state (input
8/ Cold sparing capability of the IOs allows to be electrically	connected to a h	us while its power supply re	mains in the range
[VSS-300mV/VSS+300mV], this without any risk of dama electrically connected but unpowered until needed	age for the device.	. Cold-sparing allows a redu	indant spare to be
For applications requiring high reliability, the capabil	ity to use of a red	undant device is a kev featu	ire. Cold sparing
availability on the ATF697FF makes the reconfigural	ble processor esp	ecially suitable for high relia	bility systems. The
cold sparing feature is available for all the IOs:			· · · · · · · · · · · · · · · · · · ·
All the General Purpose IOs			
All the LVDS IOs			
They present a high input impedance when unpowered [VSS-300mV / VSS	S+300mV] and exhibit a neg	ligible leakage
current if exposed to a non-null input voltage at that time	• .		
<u>9/</u> 95 percent test coverage of blank programmable logic de	evices.		
	017E		
	Δ		5962-14229
COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 3

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://www.quicksearch.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094).

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents are the issues of the documents cited in the solicitation or contract.

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JESD78 – Standardized Test Procedure for Characterization of Latch-up in CMOS Integrated Circuits.

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201-2107).

TELECOMMUNICATIONS INDUSTRY ASSOCIATION 2001

TIA/EIA-644 - Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits.

(Copies of this document are from TELECOMMUNICATIONS INDUSTRY ASSOCIATION 2001, Standards and Technology Department, 2500 Wilson Boulevard, Arlington, VA 22201).

IEEE - THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Standard 1149.1 - IEEE Standard Test Access Port and Boundary Scan Architecture.

(Copies of these documents are available online at <u>http://www.ieee.org</u> or from the IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855–1331).

(Non-Government standards and other publications are normally available from the organizations that prepare of distribute the documents. These documents may also be available in or through libraries or other informational services.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 4

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 Block diagram. The block or logic diagram(s) shall be as specified on figure 3.

3.2.3.1 LVDS Interface. The LVDS basic interface and bidirectional communication shall be as specified on figure 4.

3.2.3.2 Timing waveforms. The timing waveforms shall be as specified on figure 5.

3.2.4 Truth table(s).

3.2.4.1 <u>Unprogrammed devices.</u> The truth table or test vectors for unprogrammed devices for contracts involving no altered item drawing is not part of this drawing. When required in screening (see 4.2 herein) or qualification conformance inspection, groups A, B, C, D, or E (see 4.4 herein), the devices shall be programmed by the manufacturer prior to test. A minimum of 90 percent of the total number of logic modules shall be utilized.

3.2.4.2 <u>Programmed devices</u>. Prior to submitting altered item drawing the truth table or test vectors for programmed devices should be agreed upon by acquiring activity and the manufacturer.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Processing options</u>. Since the device is capable of being programmed by either the manufacturer or the user to result in a wide variety of configurations; two processing options are provided for selection in the contract.

3.8.1 <u>Unprogrammed device delivered to the user</u>. All testing shall be verified through group A testing as defined in 4.4.1 and table IIA.

3.8.2 <u>Manufacturer-programmed device delivered to the user</u>. All testing requirements and quality assurance provisions herein shall be satisfied by the manufacturer prior to delivery. Manufacturer shall verify design checksum after programming

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 5
DSCC FORM 2234			

	TA	ABLE I. Electrical performance chara	cteristics. 1	/ <u>2</u> /			
Test	Symbol	Conditions $3/$ -55°C \leq T _A \leq +125°C 1.65V <proc_v<sub>DD18 < 1.95V</proc_v<sub>	Group A subgroups	Device type	Lir	nits	Unit
		1.65V <fpga_v<sub>DD18 < 1.95V 3.0V <proc_v<sub>CC33 < 3.6V 3.0V <fpga_v<sub>CC33 < 3.6V Output load: 50 pF unless otherwise specified</fpga_v<sub></proc_v<sub></fpga_v<sub>			Min	Max	
High-level input voltage	VIH	$V_{CC} = PROC_V_{CC33}$ = FPGA_V_CC33	1, 2, 3	All	$0.7V_{CC}$	4	V
Low Level Input Voltage	VIL	$V_{CC} = PROC_{V_{CC33}}$ = FPGA_V_{CC33}	1, 2, 3	All	-0.3	0.3V _{CC}	V
Low level input current 4/	lı∟	$V_{IN} = PROC_V_{SS33}$ = FPGA_V_{SS33}	1,2,3	All	-1	1	μA
Low level input current with Pull up <u>5</u> / <u>6</u> /	I _{ILPU}	$V_{IN} = PROC_V_{SS33}$ = FPGA_V_{SS33}	1,2,3	All	-600	-20	μA
High level input current <u>4</u> /	I _{IH}	V _{IN} = PROC_V _{CC33} (max) = FPGA_V _{CC33} (max)	1,2,3	All	-1	1	μA
High level input current With Pull-down <u>5</u> / <u>7</u> /	I _{IHPD}	V _{IN} = PROC_V _{CC33} (max) = FPGA_V _{CC33} (max)	1,2,3	All	20	600	μA
High impedance state low level output current <u>8</u> /	I _{OZL}	$V_{IN} = PROC_V_{SS33}$ = FPGA_V_{SS33}	1,2,3	All	-1	1	μA
High impedance state low level output current With Pull up <u>5</u> / <u>9</u> /	I _{OZLPU}	V _{IN} = PROC_V _{SS33} = FPGA_V _{SS33}	1,2,3	All	-600	-20	μA
High impedance state high level output current <u>8</u> /	I _{OZH}	V _{IN} = PROC_V _{CC33} (max) = FPGA_V _{CC33} (max)	1,2,3	All	-1	1	μA
High impedance state high level output current With Pull down <u>5</u> /	I _{OZHPD}	V _{IN} = PROC_V _{CC33} (max) = FPGA_V _{CC33} (max)	1,2,3	All	20	600	μΑ
Cold Sparing input leakage current	lics	$\begin{array}{l} PROC_V_{\mathsf{DD18}=FPGA_V_{\mathsf{DD18}=0V}}\\ PROC_V_{\mathsf{CC33}=FPGA_V_{\mathsf{CC33}=0V}\\ V_{\mathsf{IN}=PROC_V_{\mathsf{SS33}} \text{ to}\\ PROC_V_{\mathsf{CC33}}\left(max\right)\\ = FPGA_V_{\mathsf{SS33}} \text{ to}\\ FPGA_V_{\mathsf{CC33}}\left(max\right) \end{array}$	1,2,3	All	-1	1	μΑ
Cold Sparing output leakage current	locs	$\begin{array}{l} PROC_V_{DD18=FPGA_V_{DD18=0V}}\\ PROC_V_{CC33=FPGA_V_{CC33=0V}}\\ V_{IN=PROC_V_{SS33} \text{ to}}\\ PROC_V_{CC33}\left(max\right)\\ = FPGA_V_{SS33} \text{ to}\\ FPGA_V_{CC33}\left(max\right) \end{array}$	1,2,3	All	-1	1	μΑ
Supply threshold of cold sparing Buffers <u>10</u> /	V _{CSTH}	I _{ICS} < 4 μA		All	0.5	Тур	V
See notes at the end of table							

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 6

	TABLE	I. Electrical performance characteris	<u>tics</u> – Continu	ied. <u>1/ 2</u> /			
Test	Symbol	Conditions $3/$ -55°C $\leq T_A \leq +125$ °C 1.65V $<$ PROC_V _{DD18} $<$ 1.95V 1.65V $<$ FPGA_V _{DD18} $<$ 1.95V 3.0V $<$ PROC_V _{CC33} $<$ 3.6V 3.0V $<$ FPGA V _{CC33} $<$ 3.6V	Group A subgroups	Device type	Lin	Limits	
		Output load: 50 pF unless otherwise specified			Min	Max	
Low level output voltage 11/	V _{OL}	$V_{CC} = PROC_{V_{CC33}} (min) = FPGA_{V_{CC33}} (min) IOL = 2, 4, 8, 10 & 14 mA$	1, 2, 3	All		0.4	V
High level output voltage12/	V _{OH}	$V_{CC} = PROC_V_{CC33} (min) = FPGA_V_{CC33} (min) IOH = -2, -4, -8, -10 & -14 mA$	1, 2, 3	All	V _{CC} -0.4		v
Processor Stand by current	Іссѕв	Reconfigurable unit not powered $FPGA_V_{DD18} = FPGA_V_{CC33} = 0V$ $V_{cc} = PROC_V_{CC33} (max)$ $V_{DD} = PROC_V_{DD18} (max)$ No clock active	1, 2, 3	All		5	mA
	I _{CCSB1}	V _{CC} = FPGA_V _{CC33} max After reset, cells not configured	1, 2, 3	All		50	mA
Standby current	I _{CCSB2}	V _{CC} = FPGA_V _{CC33} max All cells configured, no floating nodes	1, 2, 3	All		200	mA
Input capacitance 13/ 14/	C _{IN}	See 4.4.1c	4	All		10	pF
Functional test		See 4.4.1b	7, 8	All			
LVDS Drivers DC characteris	stics						
Differential output voltage	V _{od}	Rload = 100 Ω	1, 2, 3	All	247	454	mV
Output offset voltage	Vos	See figure 4	1, 2, 3	All	1125	1375	mV
Change in VOD between "0" and "1"	ΔV _{OD}	Rload = 100 Ω	1, 2, 3	All	0	50	mV
Change in VOS between "0" and "1"	ΔV _{OS}		1, 2, 3	All	0	50	mV
Output current <u>14</u> /	ISA, ISB	Drivers shorted to FPGA_V _{SS33} or FPGA_V _{CC33}	9, 10, 11	All	1	6.2	mA
Output current <u>14</u> /	ISAB	Drivers shorted together	9, 10, 11	All	2.6	4.8	mA
LVDS Receiver DC characte	ristics	•					•
Input differential Voltage 14/	V _{ID}		9, 10, 11	All	200	600	mV
Input offset range <u>14</u> /	V _{CM}		9, 10, 11	All	400	2000	mV
See notes at the end of table	·.						

STANDARD MICROCIRCUIT DRAWING	SIZE A		
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SI
FORM 2234			.

5962-14229

			-/				<u>.</u>	noito	
Test	Symbol	Conditions -55°C \leq T _A \leq +12 1.65V $<$ PROC_V _{DD18}	<u>3</u> / 25°C < 1.95V	Group subgrou	A ups	Device type	LI	mits	Unit
		1.65V <fpga_v<sub>DD18</fpga_v<sub>	< 1.95V						
		$3.0V < PROC_V_{CC33}$	< 3.6V				Min	Max	
		3.0V <fpga_v<sub>CC33</fpga_v<sub>	< 3.0V NrF					max	
		unless otherwise sp	, pi becified						
Reconfigurable Unit AC pa	arameters	14/							
		Input I/O= 3.3V, propagation delay from no extra delay	pad to q,	9, 10,	11	All		3.6	ns
IO Propagation Delay $a_{a} \rightarrow a_{b} = \frac{14}{2}$	y t _{PD}	Input I/O = 3.3V, propagation delay from extra delay 1	pad to q,	9, 10,	11	All		3.7	ns
раа / Ч <u>тт</u> и		Input I/O = $3.3V$, propagation delay from extra delay 3	pad to q,	9, 10,	11	All		4.1	ns
		Input I/O = 3.3V, propagifrom pad to q, extra del	gation delay ay 5	9, 10,	11	All		4.6	ns
		Output , 3.3V, slow, propagation delay from 40 pF load	a to pad,	9, 10,	11	All		7.1	ns
IO Propagation Delay $a \rightarrow pad \frac{14}{}$		Output , 3.3V, medium, propagation delay from 40 pF load	a to pad ,	9, 10,	11	All		6.2	ns
		Output , 3.3V, fast , propagation delay from 40 pF load	a to pad ,	9, 10,	11	All		6.0	ns
		Output , 3.3V, slow, propagation delay from 40 pF load	oe to pad,	9, 10,	11	All		8.2	ns
IO Propagation Delay oe \rightarrow pad <u>14</u> /		Output , 3.3V, medium, propagation delay from 40 pF load	oe to pad,	9, 10,	11	All		7.4	ns
		Output , 3.3V, fast , propagation delay from 40 pF load	oe to pad,	9, 10,	11	All		7.1	ns
		GCK Input pad at 3.3V delay from GCKx globa to flop onthe rising edge	l clock pad e clock	9, 10,	11	All		9.5	ns
Clocks Pad \rightarrow clk <u>14</u> / FCK Input pad at 3.3V delay from FCKx fast clu flop on the rising edge of Warning: Flops must be first or last column of the		ock pad to clock. e placed on e matrix	9, 10,	11	All		8	ns	
Set/Reset pad \rightarrow sn rn <u>14</u> /		Reset Input pad at 3.3V delay from any pad to th flop pin	, ne set/reset	9, 10,	11	All		10	ns
See notes at the end of tab	ble.								
ST/ MICROCIR	NDARD	WING	SIZE A					5962- ⁻	14229
DLA LAND AND MARITIME			RI	EVISI			SHEET		

8

COLUMBUS, OHIO 43218-3990

Тл	ABLE I. <u>EI</u>	ectrical performance	characteristics	- Continued	. <u>1/ 2</u> /			
Test	Symbol	Condition -55°C \leq T _A \leq · 1.65V <proc_v<sub>D 1.65V <fpga_v<sub>D</fpga_v<sub></proc_v<sub>	s <u>3/</u> +125°C _{D18} < 1.95V _{D18} < 1.95V	Group A subgroups	Device type	Lii	mits	Unit
		3.0V <proc_vc 3.0V <fpga_vc Output load:</fpga_vc </proc_vc 	_{C33} < 3.6V _{C33} < 3.6V 50 pF			Min	Max	
		GCK input pad to (3.3V, fast), delay global clock pad pad loaded Warning: flop is plat the output pad	o output pad from GCKx to an output at 40pF aced close to	9, 10, 11	All		22	ns
pad → pad	t _{PD}	FCK input pad to (3.3V,fast), delay fast clock pad to a loaded at 40pF Warning: Flops mu on first or last co matrix	output pad from FCKx n output pad ust be placed olumn of the	9, 10, 11	All		20	ns
Reconfigurable Unit Freeram Ti	ming – As	ynchronous mode	<u>14</u> /					
Write : we min pulse width high or low <u>14</u> /	TWEL, TWEH	See Figur	e 5.	9, 10, 11	All		1.7	ns
Write, we \rightarrow ain a, setup time of address input before low transition at the we input <u>14</u> /	t _{AWS}			9, 10, 11	All		4.2	ns
Write, we \rightarrow ain a, hold time of address input before high transition at the we input <u>14</u> /	t _{AWH}			9, 10, 11	All		1.7	ns
Write, we \rightarrow din d, setup time of data input before rising transition at the we input <u>14</u> /	t _{DS}			9, 10, 11	All		0	ns
Write, we \rightarrow din d, hold time of data input before rising transition at the we input $14/$	t _{DH}		-	9, 10, 11	All		0	ns
Write /Read, din \rightarrow dout, propagation delay between din and dout on double port ram when ain = aout <u>14</u> /	t _{DD}			9, 10, 11	All		6.4	ns
Read, ain \rightarrow dout, propagation delay from ain to dout 14/	t _{AD}			9, 10, 11	All		4.9	ns
Read, $oe \rightarrow dout$, propagation delay from oe to dout for a transition from z to 0 1 14/	t _{ozx}			9, 10, 11	All		2.9	ns
Read, oe \rightarrow dout, propagation delay from oe to dout for a transition from 0 1 to z 14/	t _{oxz}		-	9, 10, 11	All		2.9	ns
See notes at the end of table.								
STAND/ MICROCIRCUIT	ARD DRAWI	NG	SIZE A				5962-1	4229
DLA LAND AND COLUMBUS, OHIO	MARITIME D 43218-39	= 990		REVISION	N LEVEL	S	HEET 9	

т,	ABLE I. <u>EI</u>	ectrical performance c	haracteristics -	– Continued.	. <u>1/ 2</u> /			
Test	Symbol	Conditions $-55^{\circ}C \le T_{A} \le +^{2}$ $1.65V < PROC_V_{DD1}$ $1.65V < FPGA_V_{DD1}$ $3.0V < PROC_V_{CC3}$ $3.0V < FPGA_V_{CC3}$	$\frac{3/}{25^{\circ}C}$ $_{8} < 1.95V$ $_{8} < 1.95V$ $_{3} < 3.6V$ $_{2} < 3.6V$	Group A subgroups	Device type	Li	mits	Unit
		Output load: 5	0 pF			Min	Max	_
Reconfigurable Unit Freeram Ti	ming – Sy	unless otherwise s	pecified					
Write - clk min pulse width high	t _{CLKL} ,			9, 10, 11	All		1.2	ns
Or low 14/ Write - setup time of we input before active transition at the clk input 14/	t _{ськн}	See Figure	5.	9, 10, 11	All		2.7	ns
Write- hold time of we input before active transition at the clk input <u>14</u> /	t _{WCH}			9, 10, 11	All	0		ns
Write - setup time of adress input before active transition at the clk input <u>14</u> /	t _{ACS}			9, 10, 11	All		3.2	ns
Write - hold time of adress input before active transition at the clk input <u>14</u> /	t _{ACH}			9, 10, 11	All	3.3		ns
Write - setup time of data input before active transition at the clk input 14/	t _{DCS}			9, 10, 11	All		1.5	ns
Write - hold time of data input before active transition at the clk input 14/	t _{DCH}			9, 10, 11	All	0		ns
Write/ Read - propagation delay from clk to dout <u>14</u> /	t _{CD}			9, 10, 11	All		5.8	ns
Read - propagation delay from aout to dout <u>14</u> /	t _{AD}			9, 10, 11	All		4.9	ns
Read - propagation delay from oe to dout for a	t _{OZX}			9, 10, 11	All		2.9	ns
transition from z to 0 1 14/ Read - propagation delay from oe to dout for a transition from 0 1 to z or z to	toxz			9, 10, 11	All		2.9	ns
See notes at the end of Table IA								
STAND		NG	SIZE A				5962-1	4229
DLA LAND AND COLUMBUS, OHIO	MARITIME 0 43218-39			REVISION	I LEVEL	S	HEET 10	

10

T,	ABLE I. <u>EI</u>	ectrical performance characteristic	<u>s</u> – Continued	. <u>1/ 2</u> /			
Test	Symbol	$\begin{array}{c c} Symbol & Conditions \underline{3/} & O \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C & SU \\ 1.65V < PROC_V_{DD18} < 1.95V \\ 1.65V < FPGA_V_{DD18} < 1.95V \\ 3.0V < PROC_V_{CC33} < 3.6V \\ 3.0V < FPGA_V_{CC33} < 3.6V \end{array}$		Device type	Lin	nits	Unit
		3.0V <fpga_v<sub>CC33 < 3.6V Output load: 50 pF unless otherwise specified</fpga_v<sub>			Min	Max	-
LVDS Drivers AC characteristi	cs <u>14</u> /						
Maximum operating frequency	F _{MAX}	$FPGA_V_{CC33} = 3.3V \pm 0.3V$	9, 10, 11	All	-	200	MHz
Clock signal duty cycle	Clock	Max. frequency	9, 10, 11	All	45	55	%
Fall time 80-20%	t _{fall}		9, 10, 11	All	445	838	ps
Rise time 20-80%	t _{rise}		9, 10, 11	All	445	841	ps
Propagation delay	Тр	Rload = 100 O	9, 10, 11	All	1120	2120	ps
Duty cycle skew	t _{sk1}		9, 10, 11	All	0	80	ps
Channel to channel skew (same edge)	t _{sk2}		9, 10, 11	All	0	50	ps
LVDS Receiver AC characteris	stics with	Cout = 50 pF <u>14</u> /					
Propagation delay	tp	$FPGA_V_{CC33} = 3.3V \pm 0.3V$	9, 10, 11	All	0.7	2.4	ns
Duty cycle distortion	t _{skew}		9, 10, 11	All	-	500	ps

See notes at the end of Table .

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 11
DSCC FORM 2234			

TABLE I	. <u>Electric</u> a	al performance characteristics – C	ontinued. <u>1/ 2</u>	/			
Test	Symbol	Conditions <u>3/</u> -55°C $\leq T_A \leq +125$ °C 1.65V $<$ PROC_V _{DD18} $<$ 1.95V 1.65V $<$ FPGA_V _{DD18} $<$ 1.95V 3.0V $<$ PROC_V _{CC33} $<$ 3.6V 2.0V $<$ FPGA_V _{CC33} $<$ 2.6V	Group A subgroups	Device type	Lin	nits	Unit
		Output load: 50 pF unless otherwise specified			Min	Max	
Processor AC Timing - Natural skew S	6KEW[1:0]='00'					·
CLK period	t1		9 10 11	All	10		ns
with PLL disabled <u>15</u> /		See Figure 5.	0, 10, 11	,			
CLK period with PLL enable <u>14</u> /	t1_p		9, 10, 11	All	40	50	ns
CLK low or high	t2		9, 10, 11	All	4.5		ns
pulse width PLL disabled							
CLK low or high	t2_p		9, 10, 11	All	18		ns
SDCLK paried 15/	+2		0 10 11	A 11	10		
SDCLK period <u>15</u> /	13		9, 10, 11	All	10		115
- PLL disabled 16/	t4		9, 10, 11	All	3	8	ns
PLL setup time 15/ 20/	t5		9 10 11	ΔΠ		10 ⁷	ne
Reset pulse width 15/	t6		9 10 11		1*t3	10	ns
A[27:0] output delay $17/$	t10		9 10 11	All	15	8	ns
D[31:0] and CB[7:0] Output delay 17/	t11		9 10 11	All	2	8.5	ns
D[31:0] and CB[7:0]						0.0	
Setup time 17/	t12		9, 10, 11	All	4		ns
D[31:0] and CB[7:0] hold time					•		
during load/fetch <u>17</u> / <u>18</u> /	t13		9, 10, 11	All	0		ns
D[31:0] and CB[7:0] hold time during write <u>14</u> / <u>17</u> / <u>19</u> /	t14		9, 10, 11	All	0	9	ns
OE*, READ and WRITE* output delay <u>17</u> /	t15		9, 10, 11	All	1	7	ns
ROMS*[1:0] output delay <u>17</u> /	t16		9, 10, 11	All	2	5.5	ns
RAMS*[4:0], RAMOE*[4:0] and RWE*[3:0] output delay <u>17</u> /	t17		9, 10, 11	All	1.5	6	ns
IOS* output delay <u>17</u> / <u>18</u> /	t18		9, 10, 11	All	2	5.5	ns
BRDY* setup time <u>14</u> / <u>17</u> /	t19		9, 10, 11	All	5		ns
BRDY* hold time <u>14</u> / <u>17</u> /	t20		9, 10, 11	All	0		ns
SDCAS* output delay <u>17</u> /	t21		9, 10, 11	All	2	8	ns
SDCS*[1:0], SDRAS*, SDWE* and SDDQM*[3:0] output delay <u>17</u> /	t22		9, 10, 11	All	1.5	8.5	ns
BEXC* setup time <u>14</u> / <u>17</u> /	t23		9, 10, 11	All	4.5		ns
BEXC* hold time <u>14</u> / <u>17</u> /	t24		9, 10, 11	All	0		ns
PIO[15:0] output delay <u>17</u> / <u>18</u> /	t25		9, 10, 11	All	1.5	10	ns
PIO[15:0] setup time <u>14</u> / <u>15</u> /	t26		9, 10, 11	All	5		ns
PIO[15:0] hold time during load <u>14/ 17/</u>	t27		9, 10, 11	All	0		ns
PIO[15:0] hold time during write <u>14</u> / <u>17</u> / 19/	t28		9, 10, 11	All	2.5		ns
See notes at the end of table.							
STANDARD MICROCIRCUIT DRA	WING	SIZE A			59	962-14	229
DLA LAND AND MARI COLUMBUS, OHIO 4321	FIME 8-3990		REVISION LEVE	EL	SHEE	T 12	
DSCC FORM 2234 APR 97					1		

т	able I. <u>Ei</u>	ectrical performance characte	ristics – Continue	d. <u>1/ 2</u> /			
Test	Symbol	Conditions $3/$ -55°C ≤ T _A ≤ +125°C 1.65V <proc_v<sub>DD18 < 1.95 1.65V <fpga_v<sub>DD18 < 1.95 3.0V <proc_v_0000 3.6<="" <="" td=""><td>Group A subgroups</td><td>Device type</td><td>Lir</td><td>nits</td><td>Unit</td></proc_v_0000></fpga_v<sub></proc_v<sub>	Group A subgroups	Device type	Lir	nits	Unit
		3.0V <fpga_v<sub>CC33 < 3.6V 3.0V <fpga_v<sub>CC33 < 3.6V</fpga_v<sub></fpga_v<sub>	/		Min	Max	_
		unless otherwise specified	1				
Processor AC Timing - Maximur	n skew Sk	(EW[1:0]='10'		1			1
CLK period with PLL disabled	t1	See Figure 5	9, 10, 11	All	12		ns
CLK period with PLL enable 14/	t1_p	eee rigare er	9, 10, 11	All	48	50	ns
CLK low or high			0.40.44	A 11	5.4		
pulse width PLL disabled	t2		9, 10, 11	All	5.4		ns
CLK low or high	+2 n		0 10 11	A 11	21		20
pulse width PLL enable <u>14</u> /	ιz_p		9, 10, 11	All	21		115
SDCLK period <u>14</u> /	t3		9, 10, 11	All	10		ns
SDCLK output delay	t4		9, 10, 11	All	3	8	ns
- PLL disabled <u>16/</u>	-				-	7	
PLL setup time <u>15/20/</u>	t5		9, 10, 11	All	4 * 10	10'	ns
Reset pulse width <u>15/</u>	t6		9, 10, 11	All	1^t3	0	ns
A[27:0] output delay <u>17</u>	tiu		9, 10, 11	All	1.5	9	ns
Output delay <u>17</u> /	t11		9, 10, 11	All	2	9.5	ns
D[31:0] and CB[7:0] _ Setup time <u>17</u> /	t12		9, 10, 11	All	4		ns
D[31:0] and CB[7:0] hold time during load/fetch 17/ 18/	t13		9, 10, 11	All	0		ns
D[31:0] and CB[7:0] hold time during write 14/ 17/ 19/	t14		9, 10, 11	All	1	11	ns
OE*, READ and WRITE*	t15		9, 10, 11	All	1	7.5	ns
ROMS*[1:0] output delay 17/	t16		9, 10, 11	All	2	8	ns
RAMS*[4:0], RAMOE*[4:0] and						_	
RWE*[3:0] output delay <u>17</u> /	t17		9, 10, 11	All	1.5	7	ns
IOS* output delay <u>17</u> / <u>18</u> /	t18		9, 10, 11	All	2	7	ns
BRDY* setup time <u>14/ 17/</u>	t19		9, 10, 11	All	5		ns
BRDY* hold time <u>14</u> / <u>17</u> /	t20		9, 10, 11	All	0		ns
SDCAS* output delay <u>17</u> /	t21		9, 10, 11	All	2	10	ns
SDCS*[1:0], SDRAS*, SDWE* and SDDQM*[3:0] output delay <u>17/</u>	t22		9, 10, 11	All	1.5	9.5	ns
See notes at the end of table.							
STAND MICROCIRCUI	ARD F DRAWI	NG A	ZE N			5962-1	4229

REVISION LEVEL

SHEET

13

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

TABLE I. Electrical performance characteristics – Continued.							
Test	Symbol	Conditions $3/$ -55°C ≤ T _A ≤ +125°C 1.65V <proc_v<sub>DD18 < 1.95V 1.65V <fpga_v<sub>DD18 < 1.95V 3.0V <proc_v<sub>CC33 < 3.6V</proc_v<sub></fpga_v<sub></proc_v<sub>	Group A subgroups	Device type	Lin	nits	Unit
		3.0V <fpga_v<sub>CC33 < 3.6V Output load: 50 pF unless otherwise specified</fpga_v<sub>			Min	Max	
Processor AC Timing - Maximum	n skew Sk	(EW[1:0]='10' – Continued.	•		L		
BEXC* setup time 14/ 17/	t23		9, 10, 11	All	4.5		ns
BEXC* hold time <u>14/ 17/</u>	t24		9, 10, 11	All	0		ns
PIO[15:0] output delay <u>17</u> / <u>18</u> /	t25		9, 10, 11	All	1.5	11	ns
PIO[15:0] setup time <u>14/ 15/</u>	t26		9, 10, 11	All	5		ns
PIO[15:0] hold time during load <u>14/ 17/</u>	t27		9, 10, 11	All	0		ns
PIO[15:0] hold time during write 13/ 16/ 19/	t28		9, 10, 11	All	2.5		ns

1/ AC/Timing parameters (subgroup 9, 10, 11) are not directly tested but fully characterized (see note 2/), which are published on device manufacturer's data sheet and implemented in manufacturer's software (Table IIA note 8/ herein). All the timings are given at the worst case corner.

- All input I/O characteristics measured from V_{IH} of 50% of V_{CC2} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{CC2}.
- All output I/O characteristics are measured as the average of T_{PDLH} and T_{PDHL} to the pad V_{IH} of 50% of V_{CC2}.
- Clocks and Reset Input buffers are measured from a V_{IH} of 1.5V at the input pad to the internal V_{IH} of 50% of V_{CC2}.
- Maximum times for clock input buffers and internal drivers are measured for rising edge delays only.
- 2/ Characterization data is taken at initial device introduction and repeated after any design or process changes that may affect the related parameters.
- $\underline{3}$ / All tests shall be performed under the worst-case condition unless otherwise specified.
- <u>4/</u> Applies to DSUBRE, DSURX, DSUEN, BEXC*, BRDY*, CLK, RESET* and reconfigurable unit IOx (if not programmed with pull)
- 5/ Applies to reconfigurable unit I/Ox pins (if programmed with pull)
- 6/ Applies to TDI, TMS, TRST.
- 7/ Applies to TCK, BYPASS, and SKEW [0:1].
- 8/ Applies to CB[7:0], D[31:0], PIO[15:0] and reconfigurable unit IOs (if not programmed with pull)
- 9/ Applies to WDOG*, ERROR*.
- 10/ This value is not tested and for information only
- 11/ Applies to CLKDIV4, SDCLK, DSUACT, A[27:0], SDCS*[1:0], SDRAS*, SDWEN, OE*, ROM*[1:0], SDCAS*, RAMOE*[4:0], RAMS* [4:0], READ, CB [7:0], D [31:0], RWE* [3:0], WRITE*, IOS*, WDOG*, PIO [15:0], SDDQM [3:0], DSUTX and reconfigurable unit I/Ox pins.
- <u>12</u>/ Applies to SDCLK, DSUACT, A [27:0], SDCS*[1:0], SDRAS*, SDWEN, OE*, ROM*[1:0], SDCAS*, RAMOE*[4:0], RWE*[3:0], RAMS*[4:0], READ, CB [6:0], D [31:0], WRITE*, IOS*, PIO [15:0], SDDQM [3:0], DSUTX and reconfigurable unit I/Ox pins.
- 13/ Tested at initial design and after major process changes, otherwise guaranteed.
- 14/ Parameters are guaranteed by simulation, but not tested
- 15/ Not recorded tested go/nogo during functional test.
- 16/ Delay given with reference to CLK.
- 17/ Delay given with reference to SDCLK (rising edge).
- 18/ Not recorded tested during AC tests.
- <u>19</u>/ The given timing indicate when the buffer is not driving any level on the bus. This timing is independent of the capacitive load.
- 20/ Although the processor is being reset asynchronously, this timing is a minimum requirement to guarantee a proper reset of the processor: a glitch of any shorter duration may lead to an unpredictable behavior.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 14
DSCC FORM 2234			<u>.</u>

Case outline X - F4 E1 E2 0 0 PIN 1 IDENTIFIER D 3.55 ±0.05 <u>0 60</u> Þ 0 2.55 ±0.05 ۲ Bottom 2/ ∮1.50 ±0.05 4 PLS J-= L \$\$\phi_{2.55 \pm 0.05} \pm 0.05 \pm 1.05 \pm 1.05 \pm 0.05 \pm 0

	Dimens				
Symbol	Millim	eters	Symbol	Milli	meters
	Min	Max		Min	Max
А	3.09	3.14	D3	65.8	9 REF.
A1	2.40	2.94	E4	70.00 REF.	
В	0.15	0.25	E5	74.87	76.01
С	0.10	0.20	Е	0.45	0.55
D1/E1	47.67 SQ.	48.33 SQ.	F	4.5	5.5
D2/E2	43.37	43.63	J	0.75	1.05

NOTES:

- 1/ Lid is connected to ground
- 2/ The bottom pads are used only for manufacturing purpose, and must be left unconnected for end user application. It is recommended not to have routing under the pad area.

FIGURE 1. Case outline.

DLA LAND AND MARITIME REVISION LEVEL SHEET	STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
COLUMBUS, OHIO 43218-3990 15	DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 15

Case outline X

Pin Number	Pin name	Pin Number	Pin name	Pin Number	Pin name	Pin Number	Pin name
1	IO482_GCK5	45	LVDS_REF_B	89	IO705	133	Vss
2	IO487	46	IO599_OLVDSB1	90	IO707	134	V _{ss}
3	IO493	47	IO600_OLVDSB1N	91	IO711	135	BEXC*
4	IO497	48	IO603_OLVDSB2	92	IO713_D0	136	SKEW [0]
5	IO503	49	IO604_OLVDSB2N	93	IO717	137	SKEW [1]
6	IO505	50	Vss	94	Vss	138	DSURX
7	IO507	51	IO605	95	IO720_GCK6_CSOUT	139	DSUTX
8	IO511	52	IO607	96	IO722_GCK7	140	DSUEN
9	IO513	53	IO611	97	FPGA_V _{DD18}	141	DSUBRE
10	IO517	54	IO613	98	Vss	142	DSUACT
11	IO519	55	IO617	99	10725	143	BYPASS
12	IO523	56	IO619	100	CCLK	144	CLK
13	10525	57	IO623	101	10727	145	PROC Vcc33
14	10527	58	IO625	102	10731	146	Vss
15	10531	59	10627	103	10733	147	LOCK
16	10533	60	10633	104	10737	148	PROC RESET*
17	FPGA Vpp10	61	10637	105	10739	149	FRROR*
18	Vee	62	10639	106	10743	150	WDOG*
10	10537	63	10643	107	10745	151	M1
20	10530	64	10645	107	10743	152	MO
20	10533 10543 ECK3	65	EPGA Vaara	100	10747	152	M2
21	10545_1 013	66	Vee	110	10751	153	
22	10545	67		110	10753	154	
23	10547_030	69	10651	110	10757	155	
24	10551	60	10652	112		150	
20	10555	70		113		157	
20	10557	70		114	VSS	150	
21	10559	71		110	10765	109	
20	10505	72	10665	110	10703	161	
29	10565	73	10665	117	10767	101	FPGA_VDD18
30	10567	74	10667	118	10771	162	
31	10571	75	10673	119	10773	163	
32		76	10679	120	10777	164	
33	FPGA_Vcc33	70	10685	121	10779	100	
34	V _{SS}	78	10671	122	10783	166	
35		79	10677	123	10785	167	
36	FPGA_VDD18	80	10683	124	10787	168	
37	10579	81	FPGA_V _{DD18}	125	10791	169	RAMOE*[2]
<u>ა</u> გ	10583	82	VSS	126	10/93	170	
39	IO585	83	10687	127		1/1	RAMOE*[4]
40	10591	84	10693	128		172	RAMS*[0]
41	IU593_ILVDSB1	85	10691	129	FPGA_VDD18	173	KAMS*[1]
42	IU594_ILVDSB1N	86	10697	130	Vss	174	RAMS*[2]
43	IU597_ILVDSB2	87	10699	131	Vss	175	RAMS*[3]
44	IO598_ILVDSB2N	88	10703	132	V _{SS}	176	RAMS*[4]
			FIGURE 2. Tern	ninal conne	ections.		

Pin Number	Pin name	Pin Number	Pin name	Pin Number	Pin name	Pin Number	Pin name
177	FPGA_V _{DD18}	221	D[30]	265	A[26]	309	IO373
178	Vss	222	D[31]	266	A[27]	310	IO377
179	CB[0]	223	SDCAS*	267	GPIO[0]	311	IO379
180	CB[1]	224	SDCLK	268	GPIO[1]	312	IO383
181	CB[2]	225	PROC_V _{CC33}	269	GPIO[2]	313	IO385
182	CB[3]	226	Vss	270	GPIO[3]	314	IO387
183	CB[4]	227	SDCS*[0]	271	GPIO[4]	315	IO397
184	CB[5]	228	SDCS*[1]	272	GPIO[5]	316	IO393
185	CB [6]	229	SDDQM[0]	273	FPGA_V _{DD18}	317	IO399
186	CB[7]	230	SDDQM[1]	274	V _{SS}	318	IO403
187	D[0]	231	SDDQM[2]	275	GPIO[6]	319	IO405
188	D[1]	232	SDDQM[3]	276	GPIO[7]	320	IO407
189	D[2]	233	SDRAS*	277	GPIO[8]	321	FPGA_Vcc33
190	D[3]	234	SDWE*	278	GPIO[9]	322	V _{SS}
191	D[4]	235	A[0]	279	GPIO[10]	323	IO411
192	D[5]	236	A[1]	280	GPIO[11]	324	IO413
193	PROC_V _{DD18}	237	A[2]	281	GPIO[12]	325	IO417
194	Vss	238	A[3]	282	GPIO[13]	326	IO419
195	D[6]	339	A[4]	283	GPIO[14]	327	IO423
196	D[7]	240	A[5]	284	GPIO [15]	328	IO425
197	D[8]	241	PROC VDD18	285	PROC VDD PLL	329	10427
198	D[9]	242	Vss	286	PROC Vss PIL	330	IO431
199	D[10]	243	A[6]	287	10225 OTS	331	10433
200	D[11]	244	A[7]	288	10240 GCK2	332	10437
201	D[12]	245	A[8]	289	PROC Vcc33	333	10439
202	D[13]	246	A[9]	290	Vss	334	10443
203	D[14]	247	A[10]	291	10241 GCK3	335	10445
204	D[15]	248	A[11]	292	10259 LDC	336	10447
205	D[16]	249	A[12]	293	10265 HDC	337	FPGA VDD18
206	D[17]	250	A[13]	294	10303 INIT	338	Vee
207	D[18]	251	A[14]	295	10353 II VDSA1	339	10453
208	D[19]	252	A[15]	296	10354 II VDSA1N	340	10457
209	PROC VDD18	253	A[16]	297	10357 ILVDSA2	341	10459
210	Vss	254	A[17]	298	IO358 ILVDSA2N	342	IO463
211	D[20]	255	A[18]	299	LVDS REF A	343	10465
212	D[21]	256	A[19]	300	IO359 OLVDSA1	344	10467
213	D[22]	257	PROC VDD10	301	10360 OLVDSA1N	345	10471
214	D[23]	258	Vss	302	10363 OLVDSA2	346	10473
215	D[24]	259	A[20]	303	10364 OLVDSA2N	347	10477
216	D[25]	260	A[21]	304	10365	348	CON
217	D[26]	261	A[22]	305	FPGA Vpp40	349	
218	D[27]	262	A[23]	306	Vee	350	10485
210	D[28]	262	A[24]	307	10367	351	10400
220	D[29]	260	A[25]	308	10371	352	FPGA RESE

STANDARD
MICROCIRCUIT DRAWINGSIZE
ASIZE
ADLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990REVISION LEVELSHEET
17

Processor: Fetch, Read and Write from 32-bit PROM 0 wait-states

Processor: Fetch from 8-bit PROM with EDAC disabled 2n wait-states

APR 97

Processor: Fetch, Read and Write from/to 32-bit SRAM n wait-states

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

A		5962-14229	
	REVISION LEVEL	SHEET 25	

DSCC FORM 2234 APR 97

Processor: Fetch, Read and Write from/to 32-bit SRAM with Instruction Burst 0 wait-states

Processor: Fetch, Read and Write from/to 32-bit SRAM with Instruction Burst n wait-states

Downloaded from Arrow.com.

Processor: Fetch from ROM, Read and Write from/to 32-bit I/O 0 wait-states

Processor: Fetch from ROM, Read and Write from/to 32-bit I/O n wait-states

DSCC FORM 2234 APR 97

Processor: Fetch from ROM, Read and Write from/to 32-bit I/O n wait-states + sync. BRDY*

FIGURE 5. <u>Timing waveforms</u> – continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 30
DSCC FORM 2234			

APR 97 Downloaded from Arrow.com. Reconfigurable unit: Single port Write/Read

Downloaded from Arrow.com.

Reconfigurable unit: Dual-port Write with Read

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

- 4.2.1 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein.

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
- c. Subgroup 4 (CIN measurement) shall be measured only for initial qualification and after any process or design changes which may affect input or output capacitance. Capacitance shall be measured between the designated terminal and GND at a frequency equal or less than 1 MHz. Sample size is on a minimum of three devices with no failures on a minimum of five worst case pins from each device.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.2.1 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.5 <u>Programming procedures</u>. The programming procedures shall be as specified by the device manufacturer and shall be made available upon request.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 34
DSCC FORM 2234			

TABLE IIA. Electrical test requirements.

Test requirements	Subgroups (in accordance with MIL-PRF-38535, table III)		
	Device	Device	
Interim electrical parameters (see 4.2)	1, 7, 9	1, 7, 9 <u>1</u> / <u>2</u> /	
Final electrical parameters (see 4.2)	1, 2, 3, 4, 7, 8, 9, 10, 11 <u>3</u> /	1, 2, 3, 4, 7, 8, 9, 10, 11, <u>1</u> / <u>2</u> / <u>3</u> /	
Group A test requirements (see 4.4)	1, 2, 3, 4, 7, 8, 9, 10, 11 <u>3</u> /	1, 2, 3, 4, 7, 8, 9, 10, 11 <u>3</u> /	
Group C end-point electrical parameters (see 4.4)	1, 2, 3, 7, 8, 9, 10, 11 <u>3</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> / <u>2</u> / <u>3</u> /	
Group D end-point electrical parameters (see 4.4)	1, 7, 9 <u>3</u> /	1, 7, 9 <u>3</u> /	
Group E end-point electrical parameters (see 4.4)	1, 7, 9 <u>3</u> /	1, 7, 9 <u>3</u> /	

 $\underline{1}$ PDA applies to subgroup 1 and 7.

 $\underline{2}/\Delta$ delta limit (see table IIB) shall be required where specified, and the delta values shall be computed with reference to the previous interim electrical parameters.

<u>3</u>/ Subgroups 9,10, and 11 switching parameters, if not provided in table I, shall be designated by device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be maintained under document revision level control, and shall be made available to the acquiring or preparing activity upon request.

Parameter <u>1</u> /	Limit	Unit
V _{OL} /V _{OH}	+/- 0.1	V
I _{IL} /I _{IH}	+/- 0.1	μA
I _{OZL} /I _{OZH}	+/- 0.1	μA
I _{CCSB}	5	mA
ICCSB1	5	mA

TABLE IIB. Burn-in and operating life test delta limits (+25°C).

<u>1</u>/ These parameters shall be recorded before and after the required burn-in and life tests to determine the delta limits.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 35

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.2 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 Record of users. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime -VA, telephone (614) 692-8108.

6.4 Comments. Comments on this drawing should be directed to DLA Land and Maritime -VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.

6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing.

TABLE III. Pin descriptions.

Pin	Function <u>1</u> /
PROC_RESET* Processor reset (input)	[SI] When asserted, this asynchronous active low input immediately halts and resets the processor and all on-chip peripherals. The processor restarts execution after the 5th rising edge of the clock after PROC_RESET* was de-asserted.
FPGA_RESET* reconfigurable unit reset (input)	[SI] [CFG] FPGA_RESET* is the manual reset of the FPGA. This function reset the configuration download logic. FPGA_RESET* is internally pulled up to VCC and is active at a low level. Each time FPGA_RESET* is activated, the FPGA enters Manual Reset lifephase.
ERROR* Processor error (open-drain output with pull-up)	[SI] This active low output is asserted when the processor is halted in error mode.
WDOG* Watchdog timeout (open-drain output with pull-up)	[SI] This active low output is asserted when the watchdog timer has expired and remains asserted until the watchdog timer is reloaded with a non-null value.
BEXC* Bus exception (input)	[SI]This active low input is sampled simultaneously with the data during an access to the external memory. If asserted, a memory error is generated.
M0, M1, M2 reconfigurable unit configuration mode (Input)	[SI] [CFG] The configuration mode pins are used to define the configuration settings of the ATF697FF reconfiguration unit. ATF697FF reconfiguration unit samples the configuration mode pins each time a configuration clear cycle is ended. Caution : the mode pins should not be changed during power-on-reset or manual
	reset

See notes at the end of the table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 36

TABLE III. Pin descriptions - Continued.

Pin	Function <u>1</u> /		
CCLK Reconfigurable unit configuration clock (bi-directional)	[SI] [CFG] CCLK function provides the clock signal used by the configuration logic. Depending on the mode used for configuration download procedure, CCLK function is configured as input or output. For slave mode, the CCLK is configured as an input whereas for master mode, it is configured as an output. When configured in input mode, CCLK is pulled up to VCC with an internal resistor		
IO713_D0 Multiplexed General Purpose IO Configuration Data	[SI] [CFG] D0 is used to transfer configuration data from or to the FPGA onfiguration SRAM. D0 is used for serial mode configuration and can be used together with D1 to D15 for parallel mode configuration.[GPI0] General Purpose IO functionalities apply to this signal when used in IO mode.		
IO303_INIT Multiplexed General Purpose IO Configuration Error Indicator	 [SI] [CFG] INIT is used as an error indicator regarding configuration logic. INIT is a bidirectional open drain I/O pulled up to VCC with an internal resistor. [GPIO] General Purpose IO functionalities apply to this signal when used in IO mode. 		
CON Configuration Status Indicator	[SI] [CFG] CON is the FPGA configuration start and status pin. It is a bidirectional open drain I/O pulled up to VCC with an internal resistor.		
IO265_HDC Multiplexed General Purpose IO Configuration Status Indicator	[SI] [CFG] HDC indicates that the configuration download is on-going. HDC is an output and is polarized to a high logic level during the configuration.[GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.		
IO259_LDC Configuration Status Indicator Multiplexed General Purpose IO	[SI] [CFG] LDC indicates that the configuration download is on-going. LDC is an output and is polarized to a low logic level during the configuration. [GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.		
IO547_CS0* Multiplexed General Purpose IO Serial Configuration Chip Select	[SI] [CFG] CS0 is an active low chip select used during configuration. It is only available configuration download slave serial mode 1. [GPI0] General Purpose IO functionalities apply to this signal when used in IO mode.		
IO720_GCK6_CSOUT Multiplexed General Purpose IO	[SI] [CFG] CSOUT is the configuration pin used to enable the downstream device in an FPGA cascade chain.		
Configuration Select Output	FPGA. [GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.		
IO655_CHECK* Multiplexed General Purpose IO Configuration Check	[SI] [CFG] CHECK* pin is used to enable the CHECK function when combined with a configuration download start.[GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.		
IO225_OTS Multiplexed General Purpose IO Tri-State Command	[SI] [CFG] OTS pin is used to tri-state all the FPGA pins configured as user I/Os. [GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.		
CLK Processor reference clock	[CLOCK] This input provides a reference to generate the internal clock used by the processor and the internal peripherals		
BYPASS	[PLL] This active high input is used to bypass the internal PLL. When asserted, the processor is directly clocked from the external reference clock. When de-asserted, the processor receives its clock from the internal PLL.		
Processor PLL bypass	This signal shall be kept static and free from glitches while the processor is operating, as it is not sampled internally. Changing the signal shall only be performed while the processor is under reset otherwise the processor's behavior is not predictable.		

See notes at the end of the table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 37

TABLE III. Pin descriptions. - Continued

Pin	Function <u>1</u> /
LOCK PLL lock (output)	[PLL]When asserted, this active high output indicates the PLL of the processor is locked at a frequency corresponding to four times the frequency of the external processor reference clock.
SKEW[1:0] Clock tree skew (input with pull-down)	[CFG]These input signals are used to programme the skew on the internal triplicated clock trees. These signals shall be kept static and free from glitches while the processor is operating, as they are not sampled internally. Changing these signals shall only be performed while the processor is under reset otherwise the processor's behavior is not predictable.
IOx_GCKy Multiplexed General Purpose IO Clock	[CLOCK] GCK function is used to provide clock signals over the entire surface of the FPGA. GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.
IOx_FCKy Multiplexed General Purpose IO Clock	[CLOCK] 1 fast clock is available on the reconfigurable unit part. (The 2 pins (FCK3 & FCK4) are multiplexed all together). GPIO] General Purpose IO functionalities apply to this signal when used in IO mode.
A[27:0] Address bus (output)	[MEM]The lower 28 bits of the 32 bit address bus carry instruction or data addresses during a fetch or a load/store operation to the external memory. The address of the last external memory access remains on the address bus whenever the current access can be made out of the internal cache.
D[31:0] Data bus (bi-directional)	[MEM]The 32-bit bi-directional data bus serves as the interface between the processor and the external memory. The data bus is only driven by the processor during the execution of integer & floating-point store instructions and the store cycle of atomic-load- store instructions. It is kept in high impedance otherwise. However: only D[31:24] are used during an access to an 8-bit area
CB[7:0] Check bits (bi-directional)	D[15:0] are used as part of the general-purpose I/O interface whenever all the memory areas (ROM, SRAM & I/O) are 8-bit wide and the SDRAM interface is not enabled [MEM]These signals carry the EDAC check bits ^(*) during a write access to the external memory and are kept in high impedance otherwise. This applies whatever the EDAC activation or not. Note ^(*) : While only 7 bits are useful for EDAC protection, CB[7] is implemented to enable
OE* Output enable (output)	[MEM] This active low output is asserted during a read access to the external memory. It can be used as an output enable signal when accessing PROM & I/O devices
READ Read enable (output)	[MEM] This active high output is asserted during a read access to the external memory. It can be used as a read enable signal when accessing PROM & I/O devices.
WRITE* Write enable (output)	[MEM] This active low output is asserted during a write-access to the external memory. It can be used as a write enable signal when accessing PROM & I/O devices.
RWE*[3:0] PROM & SRAM byte write-enable (output)	[MEM] These active low outputs provide individual write strobes for each byte-lane on the data bus: RWE*[0] controls D[31:24], RWE*[1] controls D[23:16], RWE*[2] controls D[15:8] and RWE*[3] controls D[7:0], and they are set according to the transaction width (word/half-word/byte) and the bus width set for the respective area.
BRDY* Bus ready (input)	[MEM] When driven low, this input indicates to the processor that the current memory access can be terminated on the next rising clock edge. When driven high, this input indicates to the processor that it must wait and not end the current access.

See notes at the end of the table.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-14229
		REVISION LEVEL	SHEET 38

TABLE III. Pin descriptions. - Continued

Pin	Function <u>1</u> /
ROMS*[1:0] PROM chip-select (output)	[PROM] These active low outputs provide the chip-select signals for decoding the PROM area. ROMS*[0] is asserted when the lower half of the PROM area is accessed (0x00000000 - 0x0FFFFFFF), while ROMS* [1] is asserted when the upper half is accessed (0x10000000 - 0x1FFFFFFF).
RAMS*[4:0] SRAM chip-select (output)	[SRAM] These active low outputs provide the chip-select signals for decoding five SRAM banks.
RAMOE*[4:0] SRAM output enable (output)	[SRAM] These active low signals provide an output enable signal for each SRAM bank.
IOS* I/O select (output)	[IO] This active low output provides the chip-select signal for decoding the memory mapped I/O area.
SDCLK SDRAM clock (output)	[SDRAM] This signal provides a reference clock for SDRAM memories. It is a copy of the processor internal clock.
SDCS*[1:0] SDRAM chip select (output)	[SDRAM] These active low outputs provide the chip select signals for decoding two SDRAM banks.
SDRAS* SDRAM row address strobe (output)	[SDRAM] This active low output provides the RAS signal (Row Access Strobe) for SDRAM devices.
SDCAS* SDRAM column address strobe (output)	[SDRAM] This active low output provides the CAS signal (Column Access Strobe) for SDRAM devices.
SDWE* SDRAM write strobe (output)	[SDRAM] This active low output provides the write strobe for SDRAM devices.
SDDQM[3:0] SDRAM data mask (output)	[SDRAM] These active high outputs provide the DQM strobe (Data Mask) for SDRAM devices.
GPIO[15:0] General Purpose Input Output (bi-directional)	[GPIO] These bi-directional signals can be used as general-purpose inputs or outputs to control external devices. Some of these signals have an alternate function and also serve as inputs or outputs for internal peripherals. Half of them are used as an internal mean of communication.
IOx Reconfigurable unit : General Purpose IO	[GPIO] The programmable IOs are dedicated to user's application. Each programmable IO can independently be configured as input, output or bidirectional IO.
ILVDSx / ILVDSNx LVDS Receiver Differential Pair (Input)	[LVDS] ILDVSx/ILVDSNx receiver is a pair of differential signals that comply with the LVDS standard where 'x' is the LVDS channel: A1, A2, B1 or B2.
OLVDSx / OLVDSNx LVDS Driver Differential Pair (Output)	[LVDS] OLDVSx/OLVDSNx transmitter is a pair of differential signals that comply with the LVDS standard where 'x' is the LVDS channel: A1, A2, B1 or B2.
VREF LVDS reference voltage	[LVDS] VREF is the reference voltage for LVDS transmission operations. Each LVDS cluster has dedicated VREF source. It shall be accurately power supplied to 1.25V to comply with the LVDS standard.
DSUEN DSU enable (input)	[DSU] When asserted, this synchronous active high input enables the DSU unit. If de- asserted, the DSU trace buffer will continue to operate but the processor will not enter debug mode. This signal is meant for debug purpose and shall be driven low in the final application.
DSURX DSU receiver (input)	[DSU] This input provides the serial data stream to the DSU communication link receiver. This signal is meant for debug purpose and shall be driven low in the final application.
DSUTX DSU transmitter (output)	[DSU] This output provides the serial data stream from the DSU communication link transmitter.

See notes at the end of the table.

STANDARD **MICROCIRCUIT DRAWING** DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-14229
	REVISION LEVEL	SHEET
		39

DSCC FORM 2234

TABLE III. Pin descriptions. - Continued

Pin	Function <u>1</u> /
DSUACT DSU active (output)	[DSU] This active high output is asserted when the processor is in debug mode and controlled by the DSU.
DSUBRE DSU break enable (input)	[DSU] A low-to-high transition on this synchronous input signals a break condition and is used to set the processor into debug mode (see "Debug Support Unit" later in this document for specific use). This signal is meant for debug purpose and shall be driven low in the final application.
PROC_VCC33 Processor I/O power (supply)	[PWR] Power supply for the I/O pins of the processor.
FPGA_VCC33 Reconfiguarble unit I/O power (supply)	[PWR] Power supply for the I/O pins of the reconfigurable unit.
PROC_VDD18 Processor Core power (supply)	[PWR] Power supply for the core of processor.
FPGA_VDD18 Reconfigurable unit Core power (supply)	[PWR] Power supply for the core of reconfigurable unit.
VSS I/O ground (supply)	Ground supply.
PROC_VDD_PLL processor PLL power supply	[PWR] Power supply for the PLL.
PROC_VSS_PLL processor PLL ground supply	Ground supply for the PLL.

- 1/ In the above section, a complete description of the functions available for each pin is given. The family to which each function belongs to is precised. The various functions families available for the device are presented here after:
 - [SI] : System interface functions,
 - [CFG] : Configuration management functions,
 - [GPIO]: General Purpose Input/Output functions,
 - [CLOCK]: Clock management functions,
 - [PLL]: PLL functions,
 - [MEM]: Memory interface functions,
 - [PROM]: PROM management functions,
 - [SRAM]: SRAM management functions,
 - [SDRAM] : SDRAM management functions,
 - [IO]: IO functions,
 - [LVDS]: LVDS I/O functions,
 - [DSU]: Debugger System Unit functions,
 - [PWR]: Power Supply functions.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-14229
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 40
DSCC FORM 2234			

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 15-02-09

Approved sources of supply for SMD 5962-14229 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-1422901QXC	F7400	ATF697FF-ZA-MQ
5962-1422901VXC	F7400	ATF697FF-ZA-SV

- <u>1</u>/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u>

F7400

Vendor name and address

Atmel Nantes, La Chantrerie BP 70602 44306 Nantes Cedex 3 France

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.