FEATURES

700MHz min. count frequency
■ Extended 100E Vee range of -4.2 V to -5.5 V

- 1000ps CLK to Q, TC

■ Internal, gated $\overline{\mathrm{TC}}$ feedback
$\square 8$ bits wide
■ Fully synchronous counting and TC generation
■ Asynchronous Master Reset
■ Fully compatible with industry standard 10KH, 100K I/O levels
■ Internal $75 \mathrm{~K} \Omega$ input pulldown resistors
■ Fully compatible with Motorola MC10E/100E016
■ Available in 28-pin PLCC package

DESCRIPTION

The SY10/100E016 are high-speed synchronous, presettable and cascadable 8-bit binary counters designed for use in new, high-performance ECL systems. Architecture and operation are the same as the Motorola MC10H016 in the MECL 10KH family, extended to 8 bits, as shown in the logic diagram.

The counters feature internal feedback of $\overline{T C}$, gated by the TCLD (terminal count load) pin. When TCLD is LOW, the $\overline{T C}$ feedback is disabled and counting proceeds continuously, with TC going LOW to indicate an all-HIGH state. When TCLD is HIGH, the $\overline{T C}$ feedback causes the counter to automatically reload upon TC $=$ LOW, thus functioning as a programmable counter.

PIN NAMES

Pin	Function
$\mathrm{Po} 0-\mathrm{P} 7$	Parallel Data (Preset) Inputs
$\mathrm{Qo}_{\mathbf{0}} \mathrm{Q}$	Data outputs
$\overline{\mathrm{CE}}$	Count Enable Control Input
$\overline{\mathrm{PE}}$	Parallel Load Enable Control Input
MR	Master Reset
CLK	Clock
$\overline{\mathrm{TC}}$	Terminal Count Output
TCLD	TC-Load Control Input
Vcco	Vcc to Output

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10E016JI	J28-1	Industrial	SY10E016JI	$\mathrm{Sn}-\mathrm{Pb}$
SY10E016JITR ${ }^{(2)}$	J28-1	Industrial	SY10E016JI	$\mathrm{Sn}-\mathrm{Pb}$
SY100E016JI	J28-1	Industrial	SY100E016JI	$\mathrm{Sn}-\mathrm{Pb}$
SY100E016JITR ${ }^{(2)}$	J28-1	Industrial	SY100E016JI	$\mathrm{Sn}-\mathrm{Pb}$
SY10E016JC	J28-1	Commercial	SY10E016JC	Sn-Pb
SY10E016JCTR ${ }^{(2)}$	J28-1	Commercial	SY10E016JC	$\mathrm{Sn}-\mathrm{Pb}$
SY100E016JC	J28-1	Commercial	SY100E016JC	$\mathrm{Sn}-\mathrm{Pb}$
SY100E016JCTR ${ }^{(2)}$	J28-1	Commercial	SY100E016JC	$\mathrm{Sn}-\mathrm{Pb}$
SY10E016JY ${ }^{(3)}$	J28-1	Industrial	SY10E016JY with Pb-Free bar-line indicator	Matte-Sn
SY10E016JYTR ${ }^{(2,3)}$	J28-1	Industrial	SY10E016JYwith Pb-Free bar-line indicator	Matte-Sn
SY100E016JY ${ }^{(3)}$	J28-1	Industrial	SY100E016JY with Pb-Free bar-line indicator	Matte-Sn
SY100E016JYTR ${ }^{(2,3)}$	J28-1	Industrial	SY100E016JY with Pb-Free bar-line indicator	Matte-Sn

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{A}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.
3. Pb -Free package is recommended for new designs.

BLOCK DIAGRAM

TRUTH TABLE ${ }^{(1)}$

$\overline{\mathbf{C E}}$	$\overline{\text { PE }}$	TCLD	MR	CLK	Function
X	L	X	L	Z	Load Parallel (Pn to Qn)
L	H	L	L	Z	Continuous Count
L	H	H	L	Z	Count; Load Parallel on $\overline{\text { TC }}=\mathrm{LOW}$
H	H	X	L	Z	Hold
X	X	X	L	ZZ	Master respond, Slaves Hold
X	X	X	H	Z	Reset $(\mathrm{Qn}:=$ LOW, $\overline{\mathrm{TC}}:=\mathrm{HIGH})$

NOTE:

1. Z = Clock Pulse (LOW-to-HIGH), ZZ = Clock Pulse (HIGH-to-LOW)

DC ELECTRICAL CHARACTERISTICS

Vee = Vee (Min.) to Vee (Max.); $\mathrm{Vcc}=\mathrm{Vcco}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=-40^{\circ} \mathrm{C}$			$\mathrm{TA}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			$\mathrm{TA}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.										
ІІн	Input HIGH Current	-	-	150	-	-	150	-	-	150	-	-	150	$\mu \mathrm{A}$
Iee	Power Supply Current $\begin{array}{r} 10 \mathrm{E} \\ 100 \mathrm{E} \end{array}$	-	$\begin{aligned} & 151 \\ & 151 \end{aligned}$	$\begin{aligned} & 181 \\ & 181 \end{aligned}$	-	$\begin{aligned} & 151 \\ & 151 \end{aligned}$	$\begin{aligned} & 181 \\ & 181 \end{aligned}$	-	$\begin{aligned} & 151 \\ & 151 \end{aligned}$	$\begin{aligned} & 181 \\ & 181 \end{aligned}$	-	$\begin{aligned} & 151 \\ & 174 \end{aligned}$	$\begin{aligned} & 181 \\ & 208 \end{aligned}$	mA

AC ELECTRICAL CHARACTERISTICS

Vee = Vee (Min.) to Vee (Max.); Vcc = Vcco = GND

Symbol	Parameter	$\mathrm{TA}=-40^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			TA $=25^{\circ} \mathrm{C}$			TA $=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.										
fcount	Max. Count Frequency	700	900	-	700	900	-	700	900	-	700	900	-	MHz
tPD	Propagation Delay to Output CLK to Q MR to Q CLK to TC (Qs loaded) ${ }^{(1)}$ CLK to TC (Qs unloaded) ${ }^{(1)}$ MR to TC	$\begin{aligned} & 600 \\ & 600 \\ & 550 \\ & 550 \\ & 625 \end{aligned}$	$\begin{aligned} & 725 \\ & 775 \\ & 775 \\ & 700 \\ & 775 \end{aligned}$	$\begin{array}{\|c\|c\|} 1000 \\ 1000 \\ 1050 \\ 900 \\ 1000 \end{array}$	$\begin{aligned} & 600 \\ & 600 \\ & 550 \\ & 550 \\ & 625 \end{aligned}$	$\begin{aligned} & 725 \\ & 775 \\ & 775 \\ & 700 \\ & 775 \end{aligned}$	$\begin{gathered} 1000 \\ 1000 \\ 1050 \\ 900 \\ 1000 \end{gathered}$	$\begin{aligned} & 600 \\ & 600 \\ & 550 \\ & 550 \\ & 625 \end{aligned}$	$\begin{aligned} & 725 \\ & 775 \\ & 775 \\ & 700 \\ & 775 \end{aligned}$	$\begin{array}{\|c} 1000 \\ 1000 \\ 1050 \\ 900 \\ 1000 \end{array}$	$\begin{aligned} & 600 \\ & 600 \\ & 550 \\ & 550 \\ & 625 \end{aligned}$	$\begin{aligned} & 725 \\ & 775 \\ & 775 \\ & 700 \\ & 775 \end{aligned}$	$\begin{gathered} 1000 \\ 1000 \\ 1050 \\ 900 \\ 1000 \end{gathered}$	ps
ts	Set-up Time $\frac{\mathrm{Pn}}{\frac{\mathrm{CE}}{\mathrm{PE}}}$ TCLD	$\begin{aligned} & 150 \\ & 600 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & -30 \\ & 400 \\ & 400 \\ & 300 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 600 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & -30 \\ & 400 \\ & 400 \\ & 300 \end{aligned}$	二	$\begin{aligned} & 150 \\ & 600 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & -30 \\ & 400 \\ & 400 \\ & 300 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 600 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & -30 \\ & 400 \\ & 400 \\ & 300 \end{aligned}$	-	ps
tH	Hold Time $\frac{\mathrm{Pn}}{\mathrm{CE}}$ CE PE TCLD	$\begin{gathered} 250 \\ 0 \\ 0 \\ 100 \end{gathered}$	$\begin{array}{\|c} 30 \\ -400 \\ -400 \\ -300 \end{array}$	-	$\begin{gathered} 250 \\ 0 \\ 0 \\ 100 \end{gathered}$	$\begin{gathered} 30 \\ -400 \\ -400 \\ -300 \end{gathered}$	二	$\begin{gathered} 250 \\ 0 \\ 0 \\ 0 \\ 10 \end{gathered}$	$\begin{gathered} 30 \\ -400 \\ -400 \\ -300 \end{gathered}$	-	$\begin{gathered} 250 \\ 0 \\ 0 \\ 100 \end{gathered}$	$\begin{gathered} 30 \\ -400 \\ -400 \\ -300 \end{gathered}$	-	ps
tRR	Reset Recovery Time	900	700	-	900	700	-	900	700	-	900	700	-	ps
twp	Minimum Pulse Width CLK, MR	400	-	-	400	-	-	400	-	-	400	-	-	ps
tr	Rise/Fall Times 20% to 80%	300	510	800	300	510	800	300	510	800	300	510	800	ps

NOTE:

1. CLK to $\overline{\mathrm{TC}}$ propagation delay is dependent on the loading of the Q outputs. With all of the Q outputs loaded, the noise generated in going from a llll IIII state to a 00000000 state causes the CLk to TC+ delay to increase.

FUNCTION TABLE

Function	$\overline{\text { PE }}$	$\overline{\mathrm{CE}}$	MR	TCLD	CLK	P7-P4	P3	P2	P1	Po	Q7-Q4	Q3	Q2	Q1	Qo	$\overline{\text { TC }}$
Load	L	X	L	X	Z	H	H	H	L	L	H	H	H	L	L	H
Count	H	L	L	L	Z	X	X	X	X	X	H	H	H	L	H	H
	H	L	L	L	Z	X	X	X	X	X	H	H	H	H	L	H
	H	L	L	L	Z	X	X	X	X	X	H	H	H	H	H	L
	H	L	L	L	Z	X	X	X	X	X	L	L	L	L	L	H
Load Hold	L	X	L	X	Z	H	H	H	L	L	H	H	H	L	L	H
	H	H	L	X	Z	X	X	X	X	X	H	H	H	L	L	H
	H	H	L	X	Z	X	X	X	X	X	H	H	H	L	L	H
Load On Terminal Count	H	L	L	H	Z	H	L	H	H	L	H	H	H	L	H	H
	H	L	L	H	Z	H	L	H	H	L	H	H	H	H	L	H
	H	L	L	H	Z	H	L	H	H	L	H	H	H	H	H	L
	H	L	L	H	Z	H	L	H	H	L	H	L	H	H	L	H
	H	L	L	H	Z	H	L	H	H	L	H	L	H	H	H	H
	H	L	L	H	Z	H	L	H	H	L	H	H	L	L	L	H
Reset	X	X	H	X	X	X	X	X	X	X	L	L	L	L	L	H

APPLICATIONS INFORMATION

Cascading Multiple E016 Devices

For applications which call for larger than 8 -bit counters, multiple E016s can be tied together to achieve very wide bit width counters. The active low terminal count ($\overline{\mathrm{TC}}$) output and count enable input ($\overline{\mathrm{CE}}$) greatly facilitate the cascading of E016 devices. Two E016s can be cascaded without the need for external gating; however, for counters wider than 16 bits, external OR gates are necessary for cascade implementations.

Figure 1, below, pictorially illustrates the cascading of 4 E016s to build a 32-bit high frequency counter. Note the E101 gates used to OR the terminal count outputs of the lower order E016s to control the counting operation of the higher order bits. When the terminal count of the preceding device (or devices) goes low (the counter reaches an all 1 s state), the more significant E016 is set in its count mode and will count one binary digit upon the next positive clock transition. In addition, the preceding devices will also count one bit, thus sending their terminal count outputs back to a high state, disabling the count operation of the more significant counters and placing them back into hold modes. Therefore, for an

E016 in the chain to count all of the lower order terminal count outputs, it must be in the low state. The bit width of the counter can be increased or decreased by simply adding or subtracting E016 devices from Figure 1 and maintaining the logic pattern illustrated in the same figure.

The maximum frequency of operation for the cascaded counter chain is set by the propagation delay of the $\overline{T C}$ output and the necessary set-up time of the $\overline{C E}$ input and the propagation delay through the OR gate controlling it (for 16bit counters the limitation is only the $\overline{T C}$ propagation delay and the CE set-up time). Figure 1 shows E101 gates used to control the count enable inputs; however, if the frequency of operation is lower, a slower ECL OR gate can be used. Using the worst case guarantees for these parameters from the ECLinPS data book, the maximum count frequency for a greater than 16 -bit counter is 475 MHz and that for a 16 -bit counter is 625 MHz . Note that this assumes the trace delay between the $\overline{T C}$ outputs and the $\overline{\mathrm{CE}}$ inputs are negligible. If this is not the case, estimates of these delays need to be added to the calculations.

Figure 1. 32-Bit Cascaded E016 Counter

Programmable Divider

The E016 has been designed with a control pin which makes it ideal for use as an 8 -bit programmable divider. The TCLD pin (load on terminal count), when asserted, reloads the data present at the parallel input pin (Pn's) upon reaching terminal count (an all 1s state on the outputs). Because this feedback is built internal to the chip, the programmable division operation will run at very nearly the same frequency as the maximum counting frequency of the device. Figure 2 below illustrates the input conditions necessary for utilizing the E016 as a programmable divider set up to divide by 113.

To determine what value to load into the device to accomplish the desired division, the designer simply subtracts the binary equivalent of the desired divide ratio for the binary value for 256. As an example for a divide ration of 113:

$$
\text { PN's }=256-113=8 F 16=10001111
$$

where

$$
\mathrm{P} 0=\mathrm{LSB} \text { and } \mathrm{P} 7=\mathrm{MSB}
$$

Forcing this input condition, as per the set-up in Figure 2, will result in the waveforms of Figure 3. Note that the TC output

Figure 2. Mod 2 to 256 Programmable Divider

Figure 3. Divide by 113 E016 Programmable Divider Waveforms

Divide Ratio	Preset Data Inputs							
	P7	P6	P5	P4	P3	P2	P1	P_{0}
2	H	H	H	H	H	H	H	L
3	H	H	H	H	H	H	L	H
4	H	H	H	H	H	H	L	L
5	H	H	H	H	H	L	H	H
-	-	-	-	-	-	-	-	-
-	-	-	-	\bullet	-	-	-	-
112	H	L	L	H	L	L	L	L
113	H	L	L	L	H	H	H	H
114	H	L	L	L	H	H	H	L
-	-	-	-	-	-	-	\bullet	-
\bullet	-	-	-	-	-	-	-	-
254	L	L	L	L	L	L	H	L
255	L	L	L	L	L	L	L	H
256	L	L	L	L	L	L	L	L

Table 1. Preset Values for Various Divide Ratios
is used as the divide output and the pulse duration is equal to a full clock period. For even divide ratios twice the desired divide ratio can be loaded into the E016 and the TC output can feed the clock input of a toggle flip-flop to create a signal divided as desired with a 50% duty cycle.

A single E016 can be used to divide by any ratio from 2 to 256 , inclusive. If divide ratios of greater than 256 are needed, multiple E016s can be cascaded in a manner similar to that already discussed. When E016s are cascaded to build larger dividers, the TCLD pin will no longer provide a means for loading on terminal count. Because one does not want to reload the counters until all of the devices in the chain have reached terminal count, external gating of the $\overline{\mathrm{TC}}$ pins must be used for multiple E016 divider chains.

Figure 4 on the following page shows a typical block diagram of a 32-bit divider chain. Once again, the maximize the frequency of operation, E101 OR gates were used. For lower frequency applications, a slower OR gate could replace the E101. Note that for a 16 -bit divider, the OR function feeding the $\overline{\mathrm{PE}}$ (program enable) input CANNOT be replaced by a wire OR tie as the TC output of the least significant E016 must also feed the CE input of the most significant E016. If the
two $\overline{\mathrm{TC}}$ outputs were OR tied, the cascaded count operation would not operate properly. Because in the cascaded form the $\overline{P E}$ feedback is external and requires external gating, the maximum frequency of operation will be significantly less than the same operation in a single device.

Maximizing E016 Count Frequency

The E016 device produces nine fast transitioning singleended outputs; thus, Vcc noise can become significant in situations where all of the outputs switch simultaneously in the same direction. This Vcc noise can negatively impact the maximum frequency of operation of the device. Since the device does not need to have the Q outputs terminated to count properly, it is recommended that, if the outputs are not going to be used in the rest of the system, they should be left unterminated. In addition, if only a subset of the Q outputs are used in the system, only those outputs should be terminated. Not terminating the unused outputs will not only cut down the Vcc noise generated, but will also save in total system power dissipation. Following these guidelines will allow designers to either be more aggressive in their designs, or provide them

Figure 4. 32-Bit Cascaded E016 Programmable Divider

28-PIN PLCC (J28-1)

Rev. 03

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

