ROHS
Available on commercial versions

Schottky Barrier Rectifier

Qualified per MIL-PRF-19500/554

DESCRIPTION

This schottky barrier diode provides low forward voltage and offers military grade qualifications for high-reliability applications. This rugged DO-213AA rectifier is ideal for extreme environments. It is applicable as a free-wheeling diode, for reverse battery protection, and power supplies and converters.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Internal solder bond construction.
- Hermetically sealed (welded).
- 1000 Amps surge rating.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/554.
- RoHS compliant devices available by adding "e3" suffix (commercial grade only).

APPLICATIONS / BENEFITS

- Metal and glass construction.
- Reverse energy tested.
- Fast recovery.

MAXIMUM RATINGS @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_{J} and $\mathrm{T}_{\text {STG }}$	-55 to +175	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Reverse Voltage, Repetitive Peak and Working Peak Reverse Voltage ${ }^{(1)}$	$\mathrm{V}_{\text {RRM }}$ and $\mathrm{V}_{\mathrm{RWM}}$	45	V
Reverse Voltage, Nonrepetitive Peak	$\mathrm{V}_{\text {RSM }}$	54	V
Reverse Voltage ${ }^{(1)}$	V_{R}	45	V
Surge Peak Forward Current @ 8.3 ms half-sine wave	$\mathrm{I}_{\text {FSM }}$	1000	A
Average Forward Current 50% duty cycle square wave @ $\mathrm{T}_{\mathrm{C}}=+115{ }^{\circ} \mathrm{C}{ }^{(2)}$	$\mathrm{I}_{\text {FM }}$	60	A
Average Rectified Output Current @ $\mathrm{T}_{\mathrm{C}}=+115^{\circ} \mathrm{C}^{(3)}$	I_{O}	54	A
Solder Pad Temperature @ 10 s		260	${ }^{\circ} \mathrm{C}$

NOTES: 1. Full rated $\mathrm{V}_{\text {RRM }}$ and $\mathrm{V}_{\text {Rwm }}$ with 50% duty cycle is applicable over the range of $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+173^{\circ} \mathrm{C}$ for $\mathrm{I}_{\mathrm{FM}}=0$. Full rated continuous V_{R} (dc) is applicable over the temperature range of $\mathrm{T}_{\mathrm{C}}=-55$ to $+166^{\circ} \mathrm{C}$. When $\mathrm{V}_{\mathrm{R}}=45 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{C}}=+166^{\circ} \mathrm{C}$, then $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$.
2. Average current with a 50 percent duty cycle square wave including reverse amplitude equal to the magnitude of full rated $\mathrm{V}_{\mathrm{Rwm}}$. (See Figure 4)
3. Average current with an applied sine wave peak value equal to the magnitude of full rated V_{Rw}. For temperature-current derating curves, see Figure 4.

MSC - Lawrence
6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed metal and glass case body.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin (commercial grade only) on nickel.
- MARKING: Part number.
- POLARITY: Cathode to stud.
- MOUNTING HARDWARE: Nut, flat steel washer and lock washer available upon request.
- WEIGHT: Approximately 14 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	JAN	1N6392	e3	
Reliability Level				RoHS Compliance
JAN = JAN level JANTX = JANTX level				e3 = RoHS compliant (available on commercial grade only)
JANTXV = JANTXV level				Blank = non-RoHS compliant
Blank = Commercial				
JEDEC type number				
(see Electrical Characteristics				
table)				

SYMBOLS \& DEFINITIONS

	SYMBOLS \& DEFINITIONS
Symbol	Definition
f	Frequency
$\mathrm{I}_{\text {FM }}$	Forward Current: The current flowing from the external circuit into the anode terminal. Also see first page ratings and test conditions for I Im with 50\% duty cycle square wave.
$\mathrm{I}_{\text {FSM }}$	Surge Peak Forward Current: The forward current including all nonrepetitive transient currents but excluding all repetitive transients (ref JESD282-B).
I_{I}	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.
V_{FM}	Maximum Forward Voltage
V_{R}	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.
$\mathrm{V}_{R R M}$	Repetitive Peak Reverse Voltage: The peak reverse voltage including all repetitive transient voltages but excluding all non-repetitive transient voltages.
$\mathrm{V}_{\text {RSM }}$	Non-Repetitive Peak Inverse Voltage: The peak reverse voltage including all non-repetitive transient voltages but excluding all repetitive transient voltages.
$\mathrm{V}_{\text {RWM }}$	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.

ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Typ.	Unit
Forward Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{FM}}=120 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} * \\ & \mathrm{I}_{\mathrm{FM}}=60 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} * \\ & \mathrm{I}_{\mathrm{FM}}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} * \end{aligned}$	V_{FM}		$\begin{aligned} & 0.82 \\ & 0.68 \\ & 0.51 \end{aligned}$		V
Reverse Current Leakage $V_{R M}=45 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $V_{R M}=45 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$ * $V_{R M}=45 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ * $V_{R M}=45 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ *	$\mathrm{I}_{\text {RM }}$		$\begin{gathered} 2.0 \\ 200 \\ 60 \\ 400 \end{gathered}$		mA
Junction Capacitance $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{KHz} \leq \mathrm{f} \leq 1 \mathrm{MHz}$	C_{J}		3000		pF

*Pulse test: pulse width $300 \mu \mathrm{sec}$, duty cycle 2%

GRAPHS

FIGURE 1
Typical Forward Characteristics

FIGURE 2
Typical Reverse Characteristics

FIGURE 3
Typical Junction Capacitance

FIGURE 4
Temperature Current Derating Curve
(Derate design curve constrained by the maximum rated junction temperature ($\mathrm{T}_{\mathrm{J}} \leq 175^{\circ} \mathrm{C}$) and current rating specified. Derate design curves chosen at $\mathrm{T}_{\mathrm{J}} \leq 150{ }^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $110^{\circ} \mathrm{C}$ to show current rating where most users want to limit T_{J} in their application.)

PACKAGE DIMENSIONS

Ltr	Dimensions				Motes
	Inch		Millimeters		
	Min	Max			
C	-	0.375	-	9.53	7
C1	0.025	0.080	0.64	2.03	
CD	-	0.667	-	16.94	
CH	-	0.450	-	11.43	
HF	0.669	0.688	17.00	17.48	
HT1	0.115	0.200	2.92	5.08	
HT2	0.060	-	1.52	-	6
OAH	0.750	1.00	19.05	25.40	
SD	-	-	-	-	5
SL	0.422	0.453	10.72	11.51	
SU	-	0.090	-	2.29	4
UD	0.220	0.249	5.59	6.32	
ФT	0.140	0.175	3.56	4.45	

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for information only.
3. Units must not be damaged by torque of 30 inch-pound applied to $.25-28$ UNF-2B nut assembled on thread.
4. Length of incomplete or undercut threads of UD.
5. Maximum pitch diameter of plated threads shall be basic pitch diameter 0.2268 inch (5.76 mm) reference (FED-STD-H28, "Screw-Thread Standards for Federal Services").
6. A chamfer or undercut on one or both ends of the hex portion is optional; minimum base diameter at seating plane 0.600 inch (15.24 mm).
7. The angular orientation and peripheral configuration of terminal 1 is undefined, however, the major surfaces over dimensions C and C1 shall be flat and the minimum cross-sectional area from the hole to any point on the periphery shall be $0.0025 \mathrm{in}^{2}\left(1.59 \mathrm{~mm}^{2}\right)$.
8. In accordance with ASME Y14.5M, diameters are equivalent to $\Phi \times$ symbology.
