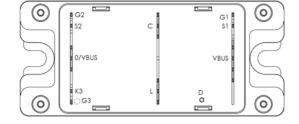


Phase leg Power Module

Super junction MOSFET Q1 & Q2: $V_{DSS} = 600V$; $I_D = 108A$ @ $T_J = 25$ °C

Application


- Plasma & Induction heating
- Uninterruptible Power Supplies

Features

- Super junction MOSFET
 - Ultra low R_{DSon}
 - Low Miller capacitance
 - Ultra low gate charge
 - Avalanche energy rated
 - Very rugged
- SiC Schottky Diode (CR2, CR3)
 - Zero reverse recovery
 - Zero forward recovery
 - Temperature Independent switching behavior
 - Positive temperature coefficient on VF
- Kelvin emitter for easy drive
- Very low stray inductance
- High level of integration
- AlN substrate for improved thermal performance

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals both for power and signal for easy PCB mounting
- Low profile
- RoHS Compliant

All ratings @ $T_j = 25^{\circ}C$ unless otherwise specified

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

1. Absolute maximum ratings

Diode (CR1)

Symbol	Parameter			Max ratings	Unit
V_{RRM}	Peak Repetitive Reverse Voltage			1600	V
I_{F}	DC Forward Current		$T_C = 80$ °C	200	
I_{FSM}	Non-Repetitive Forward Surge Current	t=10ms	$T_J = 25^{\circ}C$	1600	A
P_D	Power Dissipation		$T_C = 25^{\circ}C$	390	W

Thyristor (Q3)

Symbol	Parameter			Max ratings	Unit
V_{DRM}	Repetitive Peak Reverse Voltage		1600	V	
I_{DRM}	Repetitive Peak Reverse Current			3	mA
I _{TRMS}	RMS on – state current		$T_J = 100$ °C	60	A
I_{TSM}	Surge on – state current	t = 10 ms	$T_C = 45^{\circ}C$	520	A
V_{RGM}	Peak Reverse Gate Voltage			10	V
P_D	Power Dissipation		$T_C = 25$ °C	357	W

Super junction MOSFET (Q1 & Q2)

Symbol	Parameter		Max ratings	Unit
$V_{ m DSS}$	Drain - Source Voltage		600	V
Ţ	Continuous Drain Current	$T_c = 25$ °C	108	
I_D	Continuous Drain Current	$T_c = 80^{\circ}C$	81	Α
I_{DM}	Pulsed Drain current		260	
V_{GS}	Gate - Source Voltage		±20	V
R_{DSon}	Drain - Source ON Resistance		24	mΩ
P_{D}	Power Dissipation	$T_c = 25^{\circ}C$	647	W
I_{AR}	Avalanche current (repetitive and non repetitive)		15	Α
E _{AR}	Repetitive Avalanche Energy		3	
E_{AS}	Single Pulse Avalanche Energy		1900	mJ

SiC Diodes (CR2 & CR3)

Symbol	Parameter		Max ratings	Unit
V_{RRM}	Peak Repetitive Reverse Voltage		650	V
I_F	DC Forward Current	$T_C = 70$ °C	50	A
P _D	Power Dissipation	$T_C = 25$ °C	170	W

2. Electrical Characteristics

Diode (CR1)

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit	
I_R	Reverse Current	$V_R = 1600V$				50	μΑ	
V	$I_{\rm E} = 1$ Forward Voltage $I_{\rm E} = 77$ A \vdash	F 137.1	I - 77 A	$T_j = 25^{\circ}C$		1	1.21	V
$V_{\rm F}$		$T_j = 125$ °C		0.9	1.1	V		
V_{T}	On – state Voltage					0.83	V	
r_{T}	On – state Slope resistance					2.2	m Ω	
R_{thJC}	Junction to Case Thermal Resistance					0.32	°C/W	

MSCC60AM23C4AG-Rev 0 October, 2018

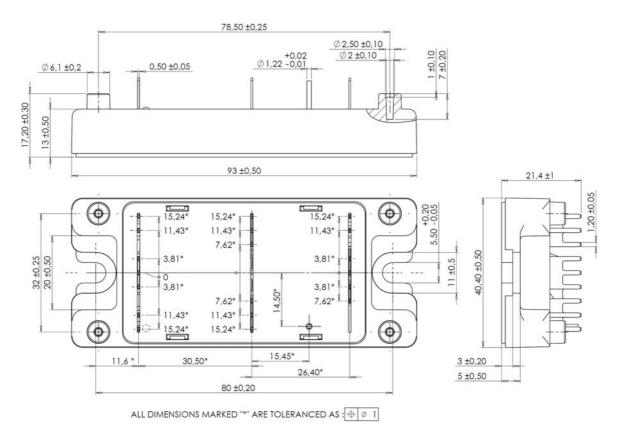
Thyristor (Q3)

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{T}	On – state Voltage	$I_T = 60A$	$T_J = 25^{\circ}C$		1.41		V
V_{TO}	Direct On state threshold Voltage		$T_J = 125$ °C		0.85		V
r_{T}	On – state Slope resistance		$T_J = 125$ °C		10		m Ω
V_{GT}	Gate Trigger Voltage		$T_J = 25$ °C		1.5		V
I_{GT}	Gate Trigger Current				50		mA
R_{thJC}	Junction to Case Thermal Resistance					0.35	°C/W

Super junction MOSFET (Q1 & Q2)

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
I_{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 600V$			350	μΑ
$R_{DS(on)}$	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 47.5A$			24	$m\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 5mA$	2.1	3	3.9	V
I_{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			200	nA
C_{iss}	Input Capacitance	$V_{GS} = 0V ; V_{DS} = 25V$		14.4		nF
C_{oss}	Output Capacitance	f = 1MHz		17		111
Q_{g}	Total gate Charge	$V_{GS} = 10V$		300		
Q_{gs}	Gate – Source Charge	$V_{Bus} = 300V$		68		пC
Q_{gd}	Gate – Drain Charge	$I_D = 95A$		102		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (125°C)		21		
T_{r}	Rise Time	$V_{GS} = 10V$		30		
$T_{d(off)} \\$	Turn-off Delay Time	$V_{Bus} = 400V$ $I_D = 95A$		100		ns
T_{f}	Fall Time	$R_G = 2.5\Omega$		45		
Eon	Turn-on Switching Energy	Inductive switching @ 125°C		2200		т
E _{off}	Turn-off Switching Energy	$V_{GS} = 10V ; V_{Bus} = 400V I_D = 95A ; R_G = 2.5\Omega$		1270		μJ
R_{Gint}	Internal gate resistance			2.5		Ω
R_{thJC}	Junction to Case Thermal Resistance	e			0.193	°C/W

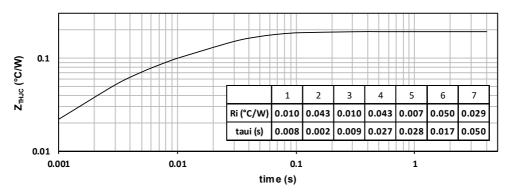
SiC Diodes (CR2 & CR3)

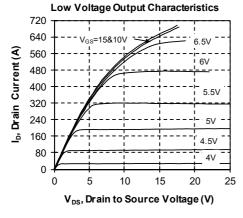

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit		
T	Davana I calca a Cumant	V -650V	$T_j = 25$ °C		50	500	4		
I_{RM}	Reverse Leakage Current	$V_R=650V$	$T_{\rm j} = 175^{\circ}{\rm C}$		200	1000	μA		
W	Di- 1- E	$I_F = 50A$	$T_i = 25^{\circ}C$		1.5	1.8	V		
$V_{\rm F}$	Diode Forward Voltage		1 _F – 30A	1 _F – 30A	$T_{j} = JOA$	$T_{j} = 175^{\circ}C$		1.8	2.2
$Q_{\rm C}$	Total Capacitive Charge	$I_F = 50A, V_R = 400V$			110		пC		
С	Total Capacitance	$f = 1 MHz, V_R = 200 V$			200		рF		
C	Total Capacitance	$f = 1MHz, V_R =$	400V		180		pr.		
R_{thJC}	Junction to Case Thermal Resistance					0.94	°C/W		

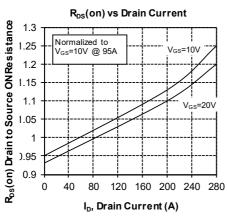
3. Package characteristics

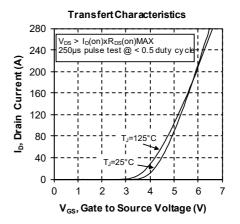
Symbol	Characteristic			Min	Max	Unit
V_{ISOL}	RMS Isolation Voltage, any terminal to case	t = 1 min, 50/60	Hz	4000		V
т	Q1, Q2, Q3, CR1		-40	150		
T_{J}	Operating junction temperature range	CR2, CR3		-40	175	
T_{JOP}	Recommended junction temperature under switching conditions			-40	T _J max -25	°C
T_{STG}	Storage Temperature Range			-40	125	
$T_{\rm C}$	Operating Case Temperature			-40	125	
Torque	Mounting torque	To Heatsink	M5	2.5	4.7	N.m
Wt	Package Weight				160	g

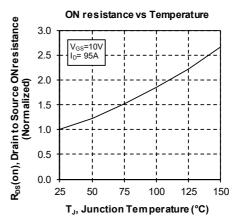
Package outline (dimensions in mm)

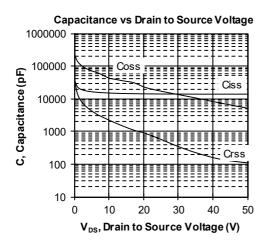

See application note APT0501 - Mounting Instructions for SP4 Power Modules on www.microsemi.com

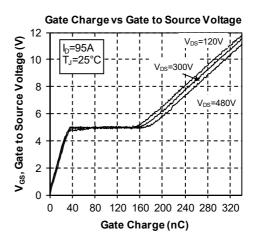


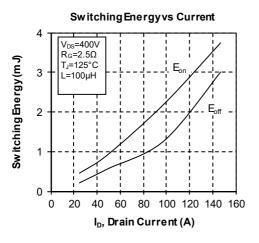

4. Typical performance curves

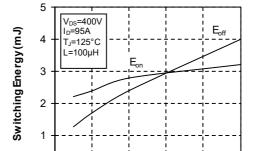

Super junction MOSFET (Q1 & Q2)


Maximum thermal impedance



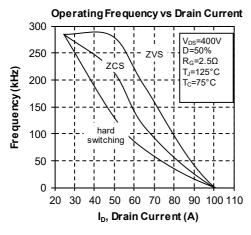






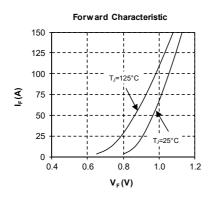
10

Gate Resistance (Ohms)

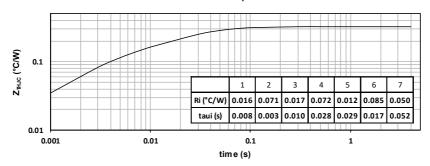

15

25

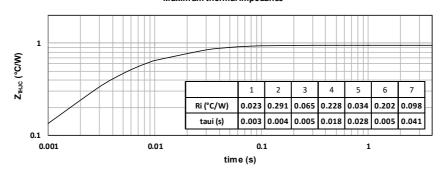
0

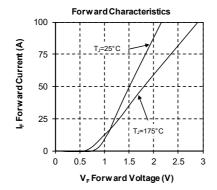

0

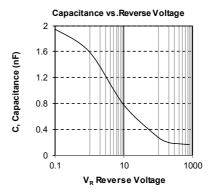
Switching Energy vs Gate Resistance



Diode (CR1)




Maximum thermal impedance



SiC diode (CR2 & CR3)

Maximum thermal impedance

MSCC60AM23C4AG-Rev 0 October, 2018

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").

Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.

MSCC60AM23C4AG-Rev 0 October, 2018