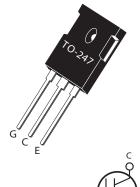


APT40GT60BR


600V, 80A, $V_{CE(ON)} = 2.1V$ Typical

Thunderbolt IGBT®

The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.

Features

- Low Forward Voltage Drop
- Low Tail Current
- RoHS Compliant
- RBSOA and SCSOA Rated
- High Frequency Switching to 150KHz
- Ultra Low Leakage Current

Maximum Ratings

All Ratings: $T_c = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Ratings	Unit
V _{CES}	Collector-Emitter Voltage	600	\
V_{GE}	Gate-Emitter Voltage	±20	Volts
I _{C1}	Continuous Collector Current @ T _C = 25°C	80	
I _{C2}	Continuous Collector Current @ T _C = 105°C	40	Amps
I _{CM}	Pulsed Collector Current ^①	160	
SSOA	Switching Safe Operating Area @ T _J = 150°C	160A @ 600V	
P_{D}	Total Power Dissipation	345	Watts
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C

Static Electrical Characteristics

Symbol	Characteristic / Test Conditions	Min	Тур	Max	Unit	
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($V_{GE} = 0V, I_{C} = 5mA$)	600	-	-		
$V_{GE(TH)}$	Gate Threshold Voltage ($V_{CE} = V_{GE}$, $I_{C} = 500\mu\text{A}$, $T_{j} = 25^{\circ}\text{C}$)	3	4	5	Volts	
$V_{CE(ON)}$	Collector Emitter On Voltage (V _{GE} = 15V, I _C = 40A, T _j = 25°C)	1.6	2.15	2.5		
	Collector Emitter On Voltage (V _{GE} = 15V, I _C = 40A, T _j = 125°C)	-	-	2.8		
I _{CES}	Collector Cut-off Current (V _{CE} = 600V, V _{GE} = 0V, T _j = 25°C) ^②	-	-	80	μA	
	Collector Cut-off Current (V _{CE} = 600V, V _{GE} = 0V, T _j = 125°C) ^②	-	-	2000		
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)	-	-	100	nA	

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
C _{ies}	Input Capacitance	V _{GE} = 0V, V _{CE} = 25V f = 1MHz	-	2190	-	pF
C _{oes}	Output Capacitance		-	220	-	
C _{res}	Reverse Transfer Capacitance		-	130	-	
$V_{\rm GEP}$	Gate-to-Emitter Plateau Voltage	Gate Charge	-	8.0	-	V
Q _g	Total Gate Charge ^③	V _{GE} = 15V	-	200	-	
Q _{ge}	Gate-Emitter Charge	V _{CE} = 300V	-	12	-	nC
Q_{gc}	Gate-Collector Charge	I _C = 40A	-	86	-	
SSOA	Switching Safe Operating Area	$T_J = 150^{\circ}C, R_G = 5\Omega, V_{GE} = 15V, L$ = 100µH, $V_{CE} = 600V$	160			А
t _{d(on)}	Turn-On Delay Time		-	12	-	ns
t _r	Current Rise Time	Inductive Switching (25°C)	-	36	-	
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V	-	124	-	
t _f	Current Fall Time	V _{GE} = 15V I _C = 40A	-	55	-	
E _{on1}	Turn-On Switching Energy ^④	$R_{\rm G} = 5\Omega$	-	-	-	
E _{on2}	Turn-On Switching Energy ^⑤	T _J = +25°C	-	945	-	μJ
E _{off}	Turn-Off Switching Energy [®]	1	-	828	-	
t _{d(on)}	Turn-On Delay Time		-	12	-	
t _r	Current Rise Time	Inductive Switching (125°C)	-	33	-	
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V	-	165	-	ns
t _f	Current Fall Time	V _{GE} = 15V	-	58	-	
E _{on1}	Turn-On Switching Energy [®]	I _C = 40A	-	-	-	
E _{on2}	Turn-On Switching Energy ^⑤	$R_{G} = 5\Omega$ $T_{I} = +125^{\circ}C$	-	1342	-	μJ
E _{off}	Turn-Off Switching Energy®	1 _J = +125 C	-	1150	-	

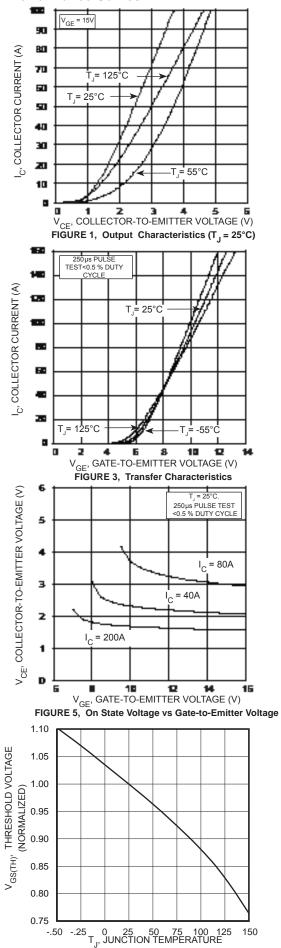
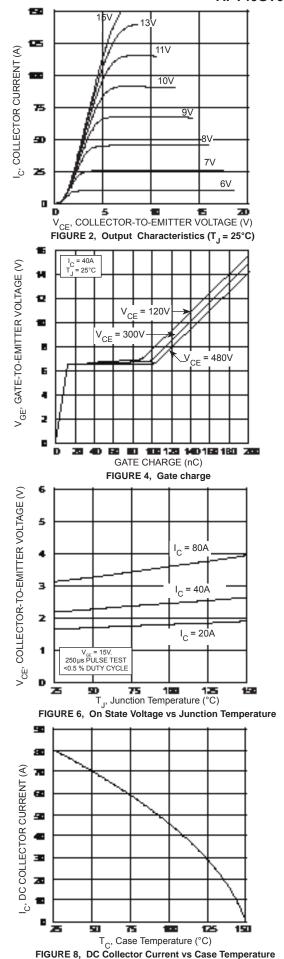
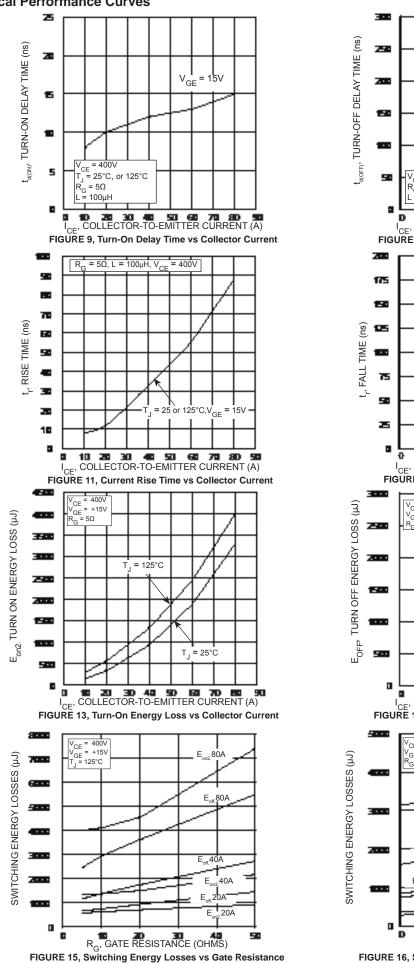
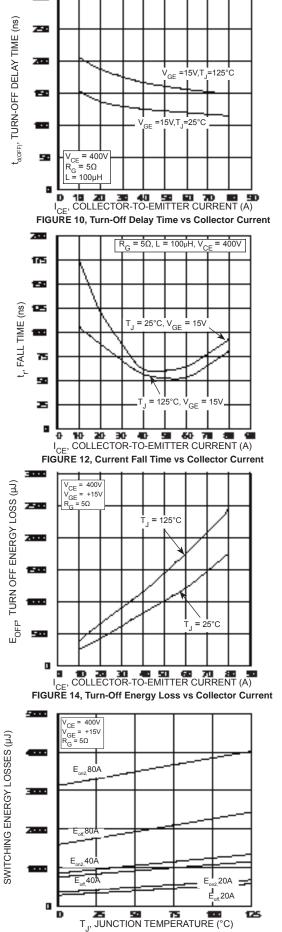
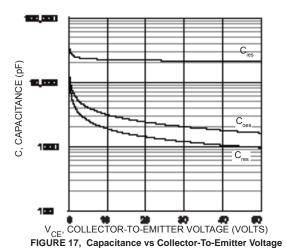
Thermal and Mechanical Characteristics

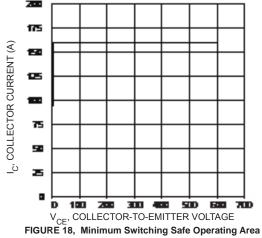
Symbol	Characteristic / Test Conditions	Min	Тур	Max	Unit	
$R_{_{ heta JC}}$	Junction to Case (IGBT)	-	-	0.36	20/14/	
R _{eJC}	Junction to Case (DIODE)	-	-	N/A	°C/W	
W _T	Package Weight	-	6.1	-	g	
Torque	Terminals and Mounting Screws	-	-	10	in∙lbf	
		-	-	1.1	N·m	
V _{Isolation}	RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500	-	-	Volts	

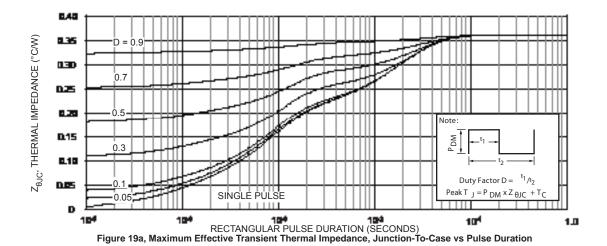
- ① Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2 For Combi devices, \mathbf{I}_{ces} includes both IGBT and FRED leakages.
- ③ See MIL-STD-750 Method 3471.
- (4) E_{on1} is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
- (5) E_{on2} is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
- (6) E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
- \bigcirc R_G is external gate resistance not including gate driver impedance.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

052-6222 Rev D 3 - 2012


FIGURE 7, Threshold Voltage vs Junction Temperature



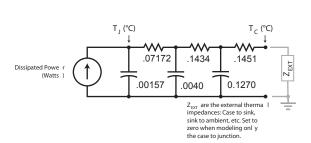
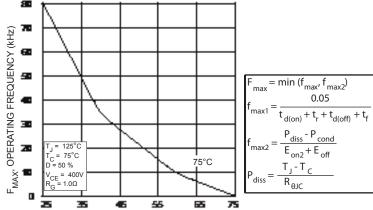
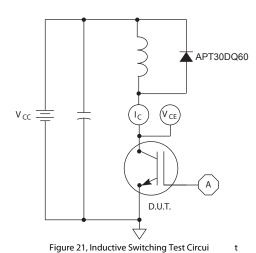




FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL

 $\label{eq:local_control} \mathbf{I_{C}}, \mathbf{COLLECTOR} \ \mathbf{CURRENT} \ (\mathbf{A})$ Figure 20, Operating Frequency vs Collector Current

APT40GT60BR

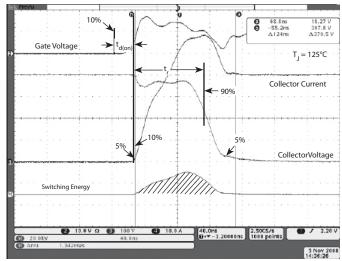


Figure 22, Turn-on Switching Waveforms and Definitions

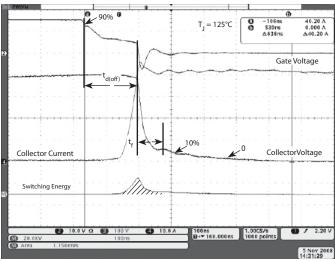
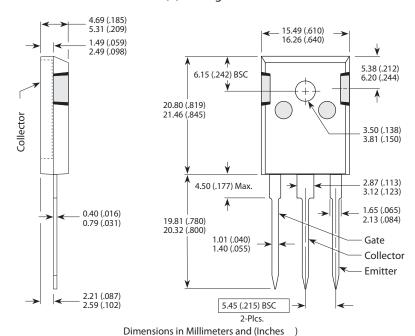



Figure 23, Turn-off Switching Waveforms and Definitions

TO-247 (B) Package Outline

