


TECHNICAL DATA

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/412

DevicesQualified Level2N38462N3847JAN
JANTX
JANTXV

Ratings	Symbol	2N3846	2N3847	Units
Collector-Emitter Voltage	V _{CEO}	200	300	Vdc
Collector-Base Voltage	V _{CBO}	300	400	Vdc
Emitter-Base Voltage	V _{EBO}	10		Vdc
Collector Current	I _C	20		Adc
Total Power Dissipation @ $T_A = +25^0 C^{(1)}$ @ $T_C = +100^0 C^{(2)}$	P _T	4.0 150		W W
Operating & Storage Temperature Range	Top, Tstg	-65 to +200		⁰ C
THERMAL CHARACTERISTICS				
Characteristics	Symbol	Max.		Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.5		⁰ C/W

ELECTRICAL CHARACTERISTICS

Character	istics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_{C} = 200 \text{ mAdc}; I_{B} = 0$	2N3846	V _{(BR)CEO}	200		Vdc
	2N3847		300		
Collector-Emitter Cutoff Current					
$V_{CE} = 300 \text{ Vdc}; V_{BE} = 0$	2N3846	I _{CES}		2	mAdc
$V_{CE} = 400 \text{ Vdc}; V_{BE} = 0$	2N3847			2	
Collector-Emitter Cutoff Current					
$V_{CE} = 200 \text{ Vdc}; I_B = 0$	2N3846	I _{CEO}		5	mAdc
$V_{CE} = 300 \text{ Vdc}; I_B = 0$	2N3847			5	
Emitter-Base Cutoff Current		т			
$V_{BE} = 10 \text{ Vdc}; I_{C} = 0$		I_{EBO}		250	μAdc
5 Lake Street, Lawrence, MA 0184	1				120101
1-800-446-1158 / (978) 794-1666 /	Fax: (978) 689-0803				Page 1 of 2

TO-63*

*See Appendix A for Package Outline

2N3846, 2N3847 JAN SERIES

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ⁽³⁾				
Forward-Current Transfer Ratio				
$I_{C} = 1 \text{ Adc}; V_{CE} = 3.0 \text{ Vdc}$		70		
$I_{C} = 5 \text{ Adc}; V_{CE} = 3.0 \text{ Vdc}$	h_{FE}	40	240	
$I_{C} = 10 \text{ Adc}; V_{CE} = 3.0 \text{ Vdc}$		12	60	
Base-Emitter Voltage				371
$V_{CE} = 3$ Vdc; $I_C = 10$ Adc	V_{BE}		1.20	Vdc
Base-Emitter Saturated Voltage	17			371
$I_{\rm B} = 1.6 {\rm Adc}; I_{\rm C} = 10 {\rm Adc}$	V _{BE(sat)}		1.30	Vdc
Collector-Emitter Saturated Voltage				Vdc
$I_{\rm B} = 1.6 {\rm Adc}; I_{\rm C} = 10 {\rm Adc}$	V _{CE(sat)}		0.75	
DYNAMIC CHARACTERISTICS	•	•	•	
Magnitude of Common-Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}			
$I_{C} = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1 \text{ MHz}$	1-101	10	35	
Small-Signal Short-Circuit Forward Current Transfer Ratio				
$I_C = 5$ Adc, $V_{CE} = 10$ Vdc, $f = 1$ kHz	h _{fe}	50	250	
Output Capacitance	G			-
$V_{CB} = 10$ Vdc, $I_E = 0$, 100 kHz $\le f \le 1.0$ MHz	C_{obo}		750	pF
SWITCHING CHARACTERISTICS	•			
Turn-On Time				
$V_{BE(off)} \sim -7.5 \text{ Vdc}; I_{C} = 10 \text{ Adc};$	ton		4	μs
$I_{B1} = 2 \text{ Adc}; I_{B2} = -2 \text{ Adc}; R_L = 15\Omega$				•
Turn-Off Time				
$V_{BE(off)} \sim -7.5 \text{ Vdc}; I_{C} = 10 \text{ Adc};$	toff		7	μs
$I_{B1} = 2 \text{ Adc}; I_{B2} = 2 \text{ Adc}; R_L = 15\Omega$				
SAFE OPERATING AREA				
DC Tests				
$T_C = +100^{\circ}C$; $V_{CE} = 0$ Vdc, $I_C = 0$ Adc (See Figure 3 on Mil-PRF-	19500/412)			
Test 1	19000, 112)			
$V_{CE} = 7.5$ Vdc; $I_C = 20$ Adc; $t_p = 1.0$ s; 1 cycle				
Test 2				
$V_{CE} = 200 \text{ Vdc}; I_{C} = 100 \text{ mAdc}; t_{p} = 1.0 \text{ s}, 1 \text{ cycle}$				
Test 3				
$V_{CE} = 58$ Vdc; $I_C = 1.0$ Adc; $t_p = 1.0$ s, 1 cycle				
Burnout by Pulsing (2N3847 only)				
$T_{\rm C} = +100^{0}$ C; $V_{\rm CE} = 300$ Vdc; $I_{\rm C} = 20$ mAdc; $t_{\rm p} = 1.0$ s, 1 cycle				
Unclamped Inductive Sweep				
$T_{\rm C} = +100^{0}$ C; $I_{\rm C} = 20$ Adc; $I_{\rm B} = 2$ Adc (See Figure 4 on Mil-PRF-1	9500/412)			
Clamped Inductive Sweep	,			
$T_{\rm C} = +100^{0}$ C; $I_{\rm C} = 20$ Adc; $I_{\rm B} = 2$ Adc (See Figure 5 on Mil-PRF-1	9500/412)			
Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.	,			

3) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.